A Network-based Approach to Associate HDL Subspeciation with Function

基于网络的 HDL 亚种与功能关联方法

基本信息

  • 批准号:
    9081634
  • 负责人:
  • 金额:
    $ 52.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): High density lipoproteins (HDL) are blood-borne complexes of protein and lipid that play critical roles in the prevention of cardiovascular disease (CVD), the major cause of mortality in the U.S. Despite its compositional heterogeneity and functional diversity, in a clinical setting, HDL is still commonly thought of as a single entity tht primarily functions in lipid transport. Recently, a growing body of evidence, including our research, has suggested there are numerous separate functions mediated by distinct stable subspecies which happen to cofractionate with classically defined "HDL". Unfortunately, little is understood about the HDL subspeciation in either basal or diseased states. The long-term goal of our laboratories is to understand the molecular basis of HDL's protection against CVD. The overall objective of this application is to develop, validate and standardize a novel approach which combines advanced proteomic analysis, functional assays and a network-based computational framework to identify new HDL species in normal human plasma and associate them with known HDL functions. Our hypothesis is that HDL is composed of numerous distinct particle subpopulations, each containing a unique protein make-up, which plays distinct physiological roles ranging from cholesterol transport to vascular signaling to innate immune function. We will pursue the following three specific aims: 1. Proteomic characterization and functional profiling of HDL sub-fractions. We hypothesize that variation in the proteomic composition of HDL particles results in different functional capacities for each subspecies. In our preliminary study, we have developed four orthogonal separation techniques. We will use mass spectrometry to profile the protein abundance level in 10-20 fractions derived from each separation technique, and examine potential co-migration patterns among protein pairs. The fractions will simultaneously be subjected to a panel of four functional assays: (a) ability to prevent oxidation of low density lipoprotein (LDL) particles; (b) ability to promote cholesterol efflux from macrophages; (c) effects on vascular function, measured as activation of endothelial nitric oxide synthase (eNOS); and (d) inhibition of agonist induced platelet aggregation. 2. Prediction of HDL interactome network using an integrative approach. Interacting proteins are often found to share common properties, e.g., similar phylogenetic profiles and co-expression patterns. These common characteristics have been shown to be predictive of protein interactions as features. We hypothesize that the interactions among HDL proteins can be accurately predicted by integrating their co-migration patterns and four most relevant features. These interacting protein pairs may co-exist in functionally synergistic HDL subparticles. Potential interacting proteins will be verified by immunoprecipitation experiments and the testing results will be used to further improve the accuracy of predictions by adjusting parameters. 3. Identification of functional modules responsible for known HDL functions from HDL interactome network. We hypothesize that, using a network-based classification, functional modules that optimally correlate with functional activity profiles can be identified from the HDL interactome network. A module, consisting of a group of HDL proteins, may correspond to the entirety or part of an HDL particle that carries out a given HDL function. We expect these network-based modules will outperform individual proteins as markers for HDL functions in both reproducibility and accuracy. This will set the stage for a future study where genetic knockout mouse models will be used to verify this particle-function relationship. This application is highly innovative because the integration of computational and experimental approaches will uncover the relationship between HDL subspeciation and function in a way that has not been attempted previously. As such, it will fill a major gap in our understanding of the compositional and functional heterogeneity of HDL particles. This work will have significant impacts on several fronts: First, the project will facilitate our molecular understanding of HDL functions by simultaneously identifying new HDL subspecies and linking them with known functions. Second, studying the HDL interactome network may reveal novel HDL functions. Third, the validated network-based approach can also be applicable to correlate HDL subspecies with CVD status, resulting in effective disease biomarkers. Finally, in the long term, therapeutic strategies can be designed to modify certain HDL subparticles or mimic their effects with the goal of reducing CVD.
DESCRIPTION (provided by applicant): High density lipoproteins (HDL) are blood-borne complexes of protein and lipid that play critical roles in the prevention of cardiovascular disease (CVD), the major cause of mortality in the U.S. Despite its compositional heterogeneity and functional diversity, in a clinical setting, HDL is still commonly thought of as a single entity tht primarily functions in lipid transport. Recently, a growing body of evidence, including our research, has suggested there are numerous separate functions mediated by distinct stable subspecies which happen to cofractionate with classically defined "HDL". Unfortunately, little is understood about the HDL subspeciation in either basal or diseased states. The long-term goal of our laboratories is to understand the molecular basis of HDL's protection against CVD. The overall objective of this application is to develop, validate and standardize a novel approach which combines advanced proteomic analysis, functional assays and a network-based computational framework to identify new HDL species in normal human plasma and associate them with known HDL functions. Our hypothesis is that HDL is composed of numerous distinct particle subpopulations, each containing a unique protein make-up, which plays distinct physiological roles ranging from cholesterol transport to vascular signaling to innate immune function. We will pursue the following three specific aims: 1. Proteomic characterization and functional profiling of HDL sub-fractions. We hypothesize that variation in the proteomic composition of HDL particles results in different functional capacities for each subspecies. In our preliminary study, we have developed four orthogonal separation techniques. We will use mass spectrometry to profile the protein abundance level in 10-20 fractions derived from each separation technique, and examine potential co-migration patterns among protein pairs. The fractions will simultaneously be subjected to a panel of four functional assays: (a) ability to prevent oxidation of low density lipoprotein (LDL) particles; (b) ability to promote cholesterol efflux from macrophages; (c) effects on vascular function, measured as activation of endothelial nitric oxide synthase (eNOS); and (d) inhibition of agonist induced platelet aggregation. 2. Prediction of HDL interactome network using an integrative approach. Interacting proteins are often found to share common properties, e.g., similar phylogenetic profiles and co-expression patterns. These common characteristics have been shown to be predictive of protein interactions as features. We hypothesize that the interactions among HDL proteins can be accurately predicted by integrating their co-migration patterns and four most relevant features. These interacting protein pairs may co-exist in functionally synergistic HDL subparticles. Potential interacting proteins will be verified by immunoprecipitation experiments and the testing results will be used to further improve the accuracy of predictions by adjusting parameters. 3. Identification of functional modules responsible for known HDL functions from HDL interactome network. We hypothesize that, using a network-based classification, functional modules that optimally correlate with functional activity profiles can be identified from the HDL interactome network. A module, consisting of a group of HDL proteins, may correspond to the entirety or part of an HDL particle that carries out a given HDL function. We expect these network-based modules will outperform individual proteins as markers for HDL functions in both reproducibility and accuracy. This will set the stage for a future study where genetic knockout mouse models will be used to verify this particle-function relationship. This application is highly innovative because the integration of computational and experimental approaches will uncover the relationship between HDL subspeciation and function in a way that has not been attempted previously. As such, it will fill a major gap in our understanding of the compositional and functional heterogeneity of HDL particles. This work will have significant impacts on several fronts: First, the project will facilitate our molecular understanding of HDL functions by simultaneously identifying new HDL subspecies and linking them with known functions. Second, studying the HDL interactome network may reveal novel HDL functions. Third, the validated network-based approach can also be applicable to correlate HDL subspecies with CVD status, resulting in effective disease biomarkers. Finally, in the long term, therapeutic strategies can be designed to modify certain HDL subparticles or mimic their effects with the goal of reducing CVD.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long Lu其他文献

Long Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long Lu', 18)}}的其他基金

A Network-based Approach to Associate HDL Subspeciation with Function
基于网络的 HDL 亚种与功能关联方法
  • 批准号:
    8372601
  • 财政年份:
    2012
  • 资助金额:
    $ 52.23万
  • 项目类别:
A Network-based Approach to Associate HDL Subspeciation with Function
基于网络的 HDL 亚种与功能关联方法
  • 批准号:
    8680359
  • 财政年份:
    2012
  • 资助金额:
    $ 52.23万
  • 项目类别:
A Network-based Approach to Associate HDL Subspeciation with Function
基于网络的 HDL 亚种与功能关联方法
  • 批准号:
    8881291
  • 财政年份:
    2012
  • 资助金额:
    $ 52.23万
  • 项目类别:
A Network-based Approach to Associate HDL Subspeciation with Function
基于网络的 HDL 亚种与功能关联方法
  • 批准号:
    8519526
  • 财政年份:
    2012
  • 资助金额:
    $ 52.23万
  • 项目类别:

相似国自然基金

Agonist-GPR119-Gs复合物的结构生物学研究
  • 批准号:
    32000851
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
  • 批准号:
    24K12256
  • 财政年份:
    2024
  • 资助金额:
    $ 52.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
  • 批准号:
    24K19176
  • 财政年份:
    2024
  • 资助金额:
    $ 52.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
  • 批准号:
    10578068
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
  • 批准号:
    10933287
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
  • 批准号:
    10650593
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
  • 批准号:
    10649275
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
  • 批准号:
    10784209
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
  • 批准号:
    10734158
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
  • 批准号:
    10580259
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
  • 批准号:
    23K05057
  • 财政年份:
    2023
  • 资助金额:
    $ 52.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了