Renal Oxygenation in the Pathophysiology of Kidney Disease

肾病病理生理学中的肾氧合

基本信息

  • 批准号:
    8967093
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In chronic kidney disease (CKD), intrarenal hypoxia has been identified as a major contributor to disease progression. Hence, it is imperative to understand the pathways that regulate kidney oxygenation in health and disease. At the earliest stages, a functional oxygen supply-demand mismatch creates a hypoxic environment. High nephron oxygen consumption without an increase in oxygen supply is the earliest pathophysiological change that leads to oxygen supply-demand mismatch. Lowering nephron oxygen consumption improves kidney function and morphology. This proposal is aimed at investigating the regulators of oxygen consumption at the earliest stages in subtotal nephrectomy, a rodent model of CKD. The strategy and overall objective is to investigate key pathophysiological events and their regulation early in the course of disease before irreversible structural changes set in and to identify novel therapeutic targets which can prevent or slow the progression of CKD. The majority of the energy in the kidney is provided by oxidative phosphorylation by the mitochondria. Preliminary data demonstrates several alterations in mitochondrial function and morphology in early subtotal nephrectomy indicating mitochondrial stress. Hypoxia inducible factor (HIF) transcription complex is a primary oxygen sensor/regulator of oxygen homeostasis and induces several target genes that impact oxygen delivery and consumption. It also has several beneficial effects on mitochondrial function. AMP-activated protein kinase (AMPK) is another important energy sensor that regulates cellular metabolic adaptations under ATP-deprived conditions and is increasingly being identified as a major player in renal pathophysiology. HIF and AMPK are also emerging as regulators of sodium transport, which is a primary driver of nephron oxygen consumption. Based on the preliminary data, the overall hypothesis is that hypoxia in early subtotal kidney, due to increased nephron oxygen consumption, leads to mitochondrial dysfunction and ROS generation, resulting in tissue injury and renal dysfunction. This is perpetuated by abnormal cellular stress adaptation due to suppressed AMPK activation. HIF-1 induction improves renal oxygenation by lowering oxygen consumption and increasing oxygen supply via effects on renal hemodynamics, salt transport and cellular effects including improvements in mitochondrial morphology and function and restoration of AMPK activation. The specific aims are to determine the subcellular, cellular and hemodynamic mechanisms whereby HIF-1 activation improves renal oxygenation in early CKD and to determine the significance of the AMPK pathway in renal function and oxygenation by examining its role in tubular transport and metabolism in early CKD. These investigations will not only provide important and novel insights into the early mechanisms of disease progression and identify treatment strategies that can be employed early to prevent the usual course of disease progression, but the broad-based approach will also serve as a spring-board for future proposals on specific mechanistic pathways underlying the coordinated actions of HIF and AMPK in the regulation of energy metabolism and transport at a cellular and subcellular level. The understanding obtained from these investigations will be valuable beyond the model studied given the universal implications of mitochondrial dysfunction in various pathophysiological conditions and the nearly ubiquitous cellular expression of HIF and AMPK in several organs.
描述(由申请人提供): 在慢性肾脏疾病(CKD)中,肾内缺氧已被确定为疾病进展的主要因素。因此,必须了解在健康和疾病中调节肾脏氧合的途径。在最早的阶段,功能性氧供需不匹配会造成缺氧环境。高肾单位氧消耗而不增加氧供应是导致氧供需不匹配的最早病理生理变化。降低肾单位耗氧量可改善肾功能和形态。这项建议的目的是调查的监管机构的氧气消耗在最早阶段的肾大部切除术,慢性肾脏病的啮齿动物模型。该策略和总体目标是在不可逆的结构变化发生之前,在疾病过程的早期研究关键的病理生理学事件及其调节,并确定可以预防或减缓CKD进展的新型治疗靶点。肾脏中的大部分能量由线粒体的氧化磷酸化提供。初步数据表明,在早期肾大部切除术线粒体功能和形态的几个变化,表明线粒体应激。缺氧诱导因子(Hypoxia inducible factor,HIF)转录复合物是氧稳态的主要氧传感器/调节器,并诱导影响氧输送和消耗的几个靶基因。它对线粒体功能也有一些有益的影响。AMP活化蛋白激酶(AMPK)是另一种重要的能量传感器,在ATP缺乏的条件下调节细胞代谢适应,并越来越多地被确定为肾脏病理生理学的主要参与者。HIF和AMPK也正在成为钠转运的调节剂,钠转运是肾单位氧消耗的主要驱动力。基于初步数据,总体假设是早期次全肾缺氧,由于肾单位耗氧量增加,导致线粒体功能障碍和ROS产生,导致组织损伤和肾功能障碍。由于AMPK激活受到抑制,导致细胞应激适应异常,从而使其持续存在。HIF-1诱导通过降低氧消耗和增加氧供应来改善肾氧合,这是经由对肾血流动力学、盐转运和细胞效应的影响,包括线粒体形态和功能的改善以及AMPK活化的恢复。具体的目的是确定亚细胞,细胞和血液动力学机制,从而HIF-1激活改善早期CKD的肾氧合,并通过检查其在早期CKD的肾小管转运和代谢中的作用来确定AMPK通路在肾功能和氧合中的意义。这些研究不仅将为疾病进展的早期机制提供重要和新颖的见解,并确定可以早期采用的治疗策略,以预防疾病进展的通常过程,但这种基础广泛的方法也将成为一个春天--委员会的未来建议的具体机制途径的基础上协调行动的HIF和AMPK的调节能量代谢和运输在一个细胞和亚细胞水平。从这些调查中获得的理解将是有价值的超越模型研究的线粒体功能障碍的普遍影响,在各种病理生理条件下和几乎无处不在的细胞表达的HIF和AMPK在几个器官。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prabhleen Singh其他文献

Prabhleen Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prabhleen Singh', 18)}}的其他基金

Renal Oxygenation and Mitochondrial Function in AKI
AKI 中的肾氧合和线粒体功能
  • 批准号:
    9906221
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in AKI
AKI 中的肾氧合和线粒体功能
  • 批准号:
    9177677
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in the in the Pathophysiology of Kidney Disease
肾脏疾病病理生理学中的肾氧合和线粒体功能
  • 批准号:
    10620166
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in the in the Pathophysiology of Kidney Disease
肾脏疾病病理生理学中的肾氧合和线粒体功能
  • 批准号:
    10252475
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Hemodynamics in Sepsis Associated Acute Kidney Injury
脓毒症相关急性肾损伤中的肾氧合和血流动力学
  • 批准号:
    8824138
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in the in the Pathophysiology of Kidney Disease
肾脏疾病病理生理学中的肾氧合和线粒体功能
  • 批准号:
    10399538
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation in the Pathophysiology of Kidney Disease
肾病病理生理学中的肾氧合
  • 批准号:
    9280806
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Hemodynamics in Sepsis Associated Acute Kidney Injury
脓毒症相关急性肾损伤中的肾氧合和血流动力学
  • 批准号:
    9027841
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Pathophysiology of Early Chronic Kidney Disease: Response to Ischemia-Reperfusion
早期慢性肾脏病的病理生理学:对缺血再灌注的反应
  • 批准号:
    8697045
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Pathophysiology of Early Chronic Kidney Disease: Response to Ischemia-Reperfusion
早期慢性肾脏病的病理生理学:对缺血再灌注的反应
  • 批准号:
    8511614
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Pharmacological targeting of AMP-activated protein kinase for immune cell regulation in Type 1 Diabetes
AMP 激活蛋白激酶对 1 型糖尿病免疫细胞调节的药理学靶向
  • 批准号:
    2867610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Establishing AMP-activated protein kinase as a regulator of adipose stem cell plasticity and function in health and disease
建立 AMP 激活蛋白激酶作为脂肪干细胞可塑性和健康和疾病功能的调节剂
  • 批准号:
    BB/W009633/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
  • 批准号:
    532989-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Metabolic control of integrin membrane traffic by AMP-activated protein kinase controls cell migration.
AMP 激活的蛋白激酶对整合素膜运输的代谢控制控制着细胞迁移。
  • 批准号:
    459043
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
  • 批准号:
    532989-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
  • 批准号:
    10561642
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
  • 批准号:
    532989-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Treating Diabetic Inflammation using AMP-Activated Protein Kinase Activators
使用 AMP 激活的蛋白激酶激活剂治疗糖尿病炎症
  • 批准号:
    2243045
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
  • 批准号:
    10359032
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Investigating the therapeutic potential of AMP-activated protein kinase in myotonic dystrophy type 1
研究 AMP 激活蛋白激酶在 1 型强直性肌营养不良中的治疗潜力
  • 批准号:
    428988
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了