Renal Oxygenation in the Pathophysiology of Kidney Disease

肾病病理生理学中的肾氧合

基本信息

  • 批准号:
    9280806
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In chronic kidney disease (CKD), intrarenal hypoxia has been identified as a major contributor to disease progression. Hence, it is imperative to understand the pathways that regulate kidney oxygenation in health and disease. At the earliest stages, a functional oxygen supply-demand mismatch creates a hypoxic environment. High nephron oxygen consumption without an increase in oxygen supply is the earliest pathophysiological change that leads to oxygen supply-demand mismatch. Lowering nephron oxygen consumption improves kidney function and morphology. This proposal is aimed at investigating the regulators of oxygen consumption at the earliest stages in subtotal nephrectomy, a rodent model of CKD. The strategy and overall objective is to investigate key pathophysiological events and their regulation early in the course of disease before irreversible structural changes set in and to identify novel therapeutic targets which can prevent or slow the progression of CKD. The majority of the energy in the kidney is provided by oxidative phosphorylation by the mitochondria. Preliminary data demonstrates several alterations in mitochondrial function and morphology in early subtotal nephrectomy indicating mitochondrial stress. Hypoxia inducible factor (HIF) transcription complex is a primary oxygen sensor/regulator of oxygen homeostasis and induces several target genes that impact oxygen delivery and consumption. It also has several beneficial effects on mitochondrial function. AMP-activated protein kinase (AMPK) is another important energy sensor that regulates cellular metabolic adaptations under ATP-deprived conditions and is increasingly being identified as a major player in renal pathophysiology. HIF and AMPK are also emerging as regulators of sodium transport, which is a primary driver of nephron oxygen consumption. Based on the preliminary data, the overall hypothesis is that hypoxia in early subtotal kidney, due to increased nephron oxygen consumption, leads to mitochondrial dysfunction and ROS generation, resulting in tissue injury and renal dysfunction. This is perpetuated by abnormal cellular stress adaptation due to suppressed AMPK activation. HIF-1 induction improves renal oxygenation by lowering oxygen consumption and increasing oxygen supply via effects on renal hemodynamics, salt transport and cellular effects including improvements in mitochondrial morphology and function and restoration of AMPK activation. The specific aims are to determine the subcellular, cellular and hemodynamic mechanisms whereby HIF-1 activation improves renal oxygenation in early CKD and to determine the significance of the AMPK pathway in renal function and oxygenation by examining its role in tubular transport and metabolism in early CKD. These investigations will not only provide important and novel insights into the early mechanisms of disease progression and identify treatment strategies that can be employed early to prevent the usual course of disease progression, but the broad-based approach will also serve as a spring-board for future proposals on specific mechanistic pathways underlying the coordinated actions of HIF and AMPK in the regulation of energy metabolism and transport at a cellular and subcellular level. The understanding obtained from these investigations will be valuable beyond the model studied given the universal implications of mitochondrial dysfunction in various pathophysiological conditions and the nearly ubiquitous cellular expression of HIF and AMPK in several organs.
描述(由申请人提供): 在慢性肾脏疾病(CKD)中,肾内缺氧已被确认为疾病进展的主要因素。因此,了解在健康和疾病中调节肾脏氧合的途径是非常必要的。在最初阶段,功能性氧供需不匹配会造成低氧环境。肾单位氧耗量高而供氧不增加是导致氧供需不匹配的最早病理生理变化。降低肾单位耗氧量可改善肾脏功能和形态。本研究旨在研究慢性肾脏病啮齿动物模型肾大部切除术早期的氧耗调节机制。其策略和总体目标是在疾病发生不可逆转的结构变化之前,在疾病进程的早期调查关键的病理生理事件及其调节,并确定可以预防或减缓CKD进展的新的治疗靶点。肾脏中的大部分能量是由线粒体氧化磷酸化提供的。初步数据显示,在早期肾大部切除术中,线粒体功能和形态发生了几个变化,表明线粒体处于应激状态。低氧诱导因子(HIF)转录复合体是氧稳态的主要氧感受器/调节器,可诱导多种靶基因影响氧的输送和消耗。它对线粒体功能也有几个有益的影响。AMP激活的蛋白激酶(AMPK)是另一个重要的能量感受器,在缺乏ATP的条件下调节细胞的代谢适应,越来越多地被认为是肾脏病理生理学中的主要参与者。HIF和AMPK也正在成为钠转运的调节者,钠转运是肾单位氧气消耗的主要驱动因素。根据初步数据,总体假设是早期肾小管缺氧,由于肾单位氧耗增加,导致线粒体功能障碍和ROS生成,从而导致组织损伤和肾功能障碍。这是由于AMPK活性被抑制而导致的异常细胞应激适应而持久存在的。HIF-1通过影响肾脏血流动力学、盐分转运和细胞效应,包括改善线粒体形态和功能,恢复AMPK活性,从而降低氧耗,增加供氧,从而改善肾脏氧合功能。研究的具体目的是确定早期CKD时HIF-1激活改善肾脏氧合作用的亚细胞、细胞和血流动力学机制,并通过检测AMPK通路在早期CKD肾小管运输和代谢中的作用,确定AMPK通路在肾功能和氧合中的意义。这些研究不仅将为疾病进展的早期机制提供重要和新颖的见解,并确定可以早期采用的治疗策略,以防止通常的疾病进展,而且基础广泛的方法还将成为未来关于HIF和AMPK在细胞和亚细胞水平上调节能量代谢和运输的协调作用的具体机制途径的建议的跳板。考虑到线粒体功能障碍在各种病理生理条件下的普遍含义,以及HIF和AMPK在几个器官中几乎无处不在的细胞表达,从这些研究中获得的理解将比所研究的模型更有价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prabhleen Singh其他文献

Prabhleen Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prabhleen Singh', 18)}}的其他基金

Renal Oxygenation and Mitochondrial Function in AKI
AKI 中的肾氧合和线粒体功能
  • 批准号:
    9906221
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in AKI
AKI 中的肾氧合和线粒体功能
  • 批准号:
    9177677
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in the in the Pathophysiology of Kidney Disease
肾脏疾病病理生理学中的肾氧合和线粒体功能
  • 批准号:
    10620166
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in the in the Pathophysiology of Kidney Disease
肾脏疾病病理生理学中的肾氧合和线粒体功能
  • 批准号:
    10252475
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Hemodynamics in Sepsis Associated Acute Kidney Injury
脓毒症相关急性肾损伤中的肾氧合和血流动力学
  • 批准号:
    8824138
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Mitochondrial Function in the in the Pathophysiology of Kidney Disease
肾脏疾病病理生理学中的肾氧合和线粒体功能
  • 批准号:
    10399538
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation in the Pathophysiology of Kidney Disease
肾病病理生理学中的肾氧合
  • 批准号:
    8967093
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Renal Oxygenation and Hemodynamics in Sepsis Associated Acute Kidney Injury
脓毒症相关急性肾损伤中的肾氧合和血流动力学
  • 批准号:
    9027841
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Pathophysiology of Early Chronic Kidney Disease: Response to Ischemia-Reperfusion
早期慢性肾脏病的病理生理学:对缺血再灌注的反应
  • 批准号:
    8697045
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Pathophysiology of Early Chronic Kidney Disease: Response to Ischemia-Reperfusion
早期慢性肾脏病的病理生理学:对缺血再灌注的反应
  • 批准号:
    8511614
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Pharmacological targeting of AMP-activated protein kinase for immune cell regulation in Type 1 Diabetes
AMP 激活蛋白激酶对 1 型糖尿病免疫细胞调节的药理学靶向
  • 批准号:
    2867610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Establishing AMP-activated protein kinase as a regulator of adipose stem cell plasticity and function in health and disease
建立 AMP 激活蛋白激酶作为脂肪干细胞可塑性和健康和疾病功能的调节剂
  • 批准号:
    BB/W009633/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
  • 批准号:
    532989-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Metabolic control of integrin membrane traffic by AMP-activated protein kinase controls cell migration.
AMP 激活的蛋白激酶对整合素膜运输的代谢控制控制着细胞迁移。
  • 批准号:
    459043
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
  • 批准号:
    532989-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
  • 批准号:
    10561642
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
  • 批准号:
    532989-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Treating Diabetic Inflammation using AMP-Activated Protein Kinase Activators
使用 AMP 激活的蛋白激酶激活剂治疗糖尿病炎症
  • 批准号:
    2243045
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
  • 批准号:
    10359032
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Investigating the therapeutic potential of AMP-activated protein kinase in myotonic dystrophy type 1
研究 AMP 激活蛋白激酶在 1 型强直性肌营养不良中的治疗潜力
  • 批准号:
    428988
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了