Pathogenic Yeast Stress Signaling Networks
致病性酵母应激信号网络
基本信息
- 批准号:9058118
- 负责人:
- 金额:$ 11.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnabolismAntifungal AgentsAreaBindingBiologyBiomedical ResearchCandida albicansCandidiasisCarbohydratesCaspofunginCathetersCationsCell WallCellsCerebrospinal FluidChronically IllComputer SimulationDNADNA SequenceDataDevelopmentDisseminated candidiasisDrug usageEnvironmentEyeFundingGene Expression RegulationGene TargetingGenesGeneticGenetic EpistasisGenetic ScreeningGenomicsGoalsHealthHispanic-serving InstitutionHumanInfectionInfectious AgentKidneyMicrobial BiofilmsMolecular GeneticsMutationOsmotic ShocksPathogenesisPatientsPhysiciansPhysiologicalPlayPopulationProcessResearchRoleSignal PathwaySignal TransductionSodium ChlorideStressStudentsTestingTimeUrineVirulenceWorkYeastsbasebiological adaptation to stresscandidemiacarbohydrate metabolismcell growthcell typecollegecombinatorialcost effectivedimorphismenvironmental changegene discoverygenetic approachgenomic datainhibitor/antagonistinnovationinsightinterestmortalitynovelpathogenpromoterprospectiveresistance mechanismresponsetherapeutic targettranscription factorurinary
项目摘要
DESCRIPTION (provided by applicant): Candida albicans is the most common fungal pathogen in humans and the third most common nosocomial infectious agent. Signaling pathways control processes critical for adaptation, survival, and pathogenesis. Our long-term research goal is to understand the roles of signaling pathways in C. albicans survival in response to environmental stress and antifungal drugs. We discovered that transcription factor Sko1 plays a novel role as a major regulator of the cell wall damage response caused by the antifungal drug caspofungin. In addition, we found a conserved role of Sko1 as a regulator of the osmotic stress response. Our objective in this proposal is to identify and functionally characterize the Sko1 transcriptional network underlying the response to successive hyperosmotic stress and caspofungin-induced cell wall damage. Our transcriptional profiling studies uncovered the genetic network underlying Sko1-dependent osmotic stress signaling and caspofungin-induced signaling; however, the direct gene targets remain unknown. Moreover, numerous Sko1-dependent genes have not been functionally characterized. Our central hypothesis is that Sko1 binding to the DNA promoter sequences ATAGCAAT(C/T)A and G(A/T)GATGAGATG confers caspofungin tolerance when cells are pre-exposed to hyperosmotic environments, and Sko1-dependent genes involved in carbohydrate and cation transport are required for adaptive cell growth. This hypothesis is based on three observations. First, our in silico findings show that the aforementioned DNA sequences were enriched in Sko1-dependent genes. Second, strains containing mutations to several Sko1-dependent genes including the carbohydrate transporter HGT6 are hypersensitive to caspofungin. Third, C. albicans wild-type cells pre- treated with sodium chloride have increased tolerance to caspofungin. We propose the following specific aims to test our central hypothesis: 1) To determine the promoter sequences required for Sko1 gene regulation and 2) To determine the role of carbohydrate and cation transporters in the osmotic and cell wall damage stress responses. We will utilize a genomics and high-throughput molecular genetics approach that is cost-effective and time-saving. Caspofungin has limited activity against C. albicans infections in hyperosmotic environments such as the kidneys and urine, the cerebrospinal fluid, and the eyes. Hence, this proposal is innovative in the identification of an adaptive mechanism to successive stress. Moreover, it will provide a framework of genetic targets that can propel development of novel antifungal agents that can be used synergistically with caspofungin. John Jay College (CUNY) is the largest Hispanic-serving institution in the northeastern U.S. and funding of this proposal will expand biomedical research to a student population that currently lacks opportunities in this critical area.
描述(由申请人提供):白色念珠菌是人类中最常见的真菌病原体,也是第三大常见的医院感染剂。信号通路控制过程对于适应,生存和发病机理至关重要。我们的长期研究目标是了解信号通路在白色念珠菌生存中的作用,以响应环境压力和抗真菌药物。我们发现转录因子SKO1是由抗真菌药物Caspofungin引起的细胞壁损伤反应的主要调节剂的新作用。此外,我们发现SKO1作为渗透应力反应的调节剂的保守作用。我们在该提案中的目标是识别并在功能上表征SKO1转录网络,这是对连续过度渗透应激和Caspofungin诱导的细胞壁损伤的反应的基础。我们的转录分析研究发现了SKO1依赖性渗透压信号传导和Caspofungin诱导的信号传导的基础遗传网络。但是,直接基因靶标仍然未知。此外,尚未在功能上表征许多SKO1依赖性基因。我们的中心假设是,Sko1与DNA启动子序列Atagcaat(C/T)A和G(A/T)Gatgagatg结合时,当细胞预先暴露于高渗透环境以及SKO1依赖性基因涉及碳水化合物和阳离子的转运时,需要适应caspofungin的耐受性。该假设基于三个观察。首先,我们的计算机研究结果表明,上述DNA序列富含SKO1依赖性基因。其次,含有突变的菌株对包括碳水化合物转运蛋白HGT6在内的几种Sko1依赖性基因对Caspofungin过敏。第三,白色念珠菌野生型细胞用氯化钠预先处理的,对Caspofungin的耐受性提高。我们提出了以下特定旨在测试我们的中心假设的特定目的:1)确定SKO1基因调节所需的启动子序列,以及2)确定碳水化合物和阳离子转运蛋白在渗透和细胞壁损伤应激反应中的作用。我们将利用具有成本效益且节省时间的基因组学和高通量分子遗传学方法。 Caspofungin在肾脏和尿液,脑脊液和眼睛等高渗环境中对白色念珠菌感染的活性有限。因此,该提议在识别适应性压力的适应性机制方面具有创新性。此外,它将提供一个遗传靶标的框架,可以推动可与Caspofungin协同使用的新型抗真菌药物的开发。约翰·杰伊学院(John Jay College)(CUNY)是美国东北部最大的西班牙裔服务机构,该提案的资金将扩大生物医学研究,以扩大到目前缺乏这个关键领域机会的学生人群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Malcolm Rauceo其他文献
Jason Malcolm Rauceo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Malcolm Rauceo', 18)}}的其他基金
Control of Mitochondrial Function by SPFH Proteins in Pathogenic Yeast
病原酵母中 SPFH 蛋白对线粒体功能的控制
- 批准号:
10674870 - 财政年份:2021
- 资助金额:
$ 11.77万 - 项目类别:
Control of Mitochondrial Function by SPFH Proteins in Pathogenic Yeast
病原酵母中 SPFH 蛋白对线粒体功能的控制
- 批准号:
10332017 - 财政年份:2021
- 资助金额:
$ 11.77万 - 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
- 批准号:
6942241 - 财政年份:2003
- 资助金额:
$ 11.77万 - 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
- 批准号:
6741334 - 财政年份:2003
- 资助金额:
$ 11.77万 - 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
- 批准号:
6807048 - 财政年份:2003
- 资助金额:
$ 11.77万 - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目