Computational Analysis of Subclonal Evolution in Chronic Lymphocytic Leukemia
慢性淋巴细胞白血病亚克隆进化的计算分析
基本信息
- 批准号:9121235
- 负责人:
- 金额:$ 3.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAftercareApoptosisArchitectureCancer BiologyCell AgingCell ProliferationCellsChronic Lymphocytic LeukemiaClinicalComputer AnalysisComputer softwareCopy Number PolymorphismDNADNA RepairDana-Farber Cancer InstituteDataData SetDevelopmentDiseaseDisease ProgressionDrug resistanceEnvironmentEtiologyEventEvolutionExhibitsFrequenciesGene ExpressionGenesGeneticGenetic HeterogeneityGrowthHeterogeneityIn VitroInflammationLeadLinkMalignant NeoplasmsMeasurementMethodsMolecular ProfilingMono-SMorphologic artifactsMutationNucleotidesOutcomePathogenesisPathway interactionsPatientsPlayPopulationProcessRNARNA SplicingRelapseResearchResearch ProposalsResolutionRoleSamplingShapesSignal TransductionSomatic MutationStatistical MethodsTechniquesTimeVariantWorkbasecancer typedifferential expressionimprovedin vivoinnovationinsightnotch proteinopen sourceoutcome forecastpersonalized cancer therapyprecision medicinepublic health relevanceresponsesingle cell analysistherapy resistanttranscriptome sequencingtranscriptomicstreatment strategytumor heterogeneitytumor progressiontumorigenic
项目摘要
DESCRIPTION (provided by applicant): Intratumor genetic and transcriptional heterogeneity is a common feature across diverse cancer types, including. CLL is a particular cancer that exhibits genetic and transcriptional heterogeneity along with a highly variable disease course among patients that remains poorly understood. Previous research has established that the presence of particular subclonal mutations in CLL can be linked with adverse clinical outcomes and that these subclonal mutations change over time in response to therapy. Therefore, genetic and transcriptional characterization of these subclonal populations will be paramount to enabling precision medicine and synergistic treatment combinations that target subclonal drivers and eliminate aggressive subpopulations thereby improving clinical outcome. While bulk measurements and analysis has provided key insights into cancer biology, etiology, and prognosis in the past, this approach does not provide the resolution that is critical for understanding the interactions between different genetic events within the same environmental and genetic backgrounds to drive metastatic disease, drug resistance and disease progression. Single cell measurements are uniquely able to definitively unravel and connect these relationships. However, simultaneous extraction of DNA and RNA from the same single cells is currently not reliable. Therefore, new statistical methods and computational approaches are needed to identify and resolve genetic subpopulations using single cell transcriptional data alone. In this proposed research, I will develop statistical methods and computational software to analyze single cell RNA-seq data derived from CLL patient samples. Specifically, I will develop methods to identify aspects of genetic heterogeneity, such as the presence of small single nucleotide mutations and regions of copy number variation, in single cells. I will then reconstruct the genetic subclonal architecture and characterize the gene expression profiles of identified subclonal populations. The proposed work will yield innovative statistical methods to enable the identification and characterization of subclonal populations in cancer and yield opensource software that can be tailored and applied to diverse cancer types. Ultimately, application of these developed methods to CLL will provide a better understanding of CLL development and progression.
描述(由申请人提供):肿瘤内遗传和转录异质性是多种癌症类型的共同特征,包括。CLL是一种特殊的癌症,其表现出遗传和转录异质性沿着患者中高度可变的疾病过程,其仍然知之甚少。先前的研究已经确定,CLL中特定亚克隆突变的存在可能与不良临床结果有关,并且这些亚克隆突变会随着时间的推移而改变。因此,这些亚克隆群体的遗传和转录表征对于实现靶向亚克隆驱动因子并消除侵袭性亚群从而改善临床结果的精准医学和协同治疗组合至关重要。 虽然批量测量和分析在过去为癌症生物学、病因学和预后提供了关键的见解,但这种方法并没有提供对于理解相同环境和遗传背景下不同遗传事件之间的相互作用以驱动转移性疾病、耐药性和疾病进展至关重要的解决方案。单细胞测量是唯一能够明确地解开和连接这些关系。然而,从相同的单细胞中同时提取DNA和RNA目前并不可靠。因此,需要新的统计方法和计算方法来单独使用单细胞转录数据识别和解析遗传亚群。 在这项拟议的研究中,我将开发统计方法和计算软件来分析来自CLL患者样本的单细胞RNA-seq数据。具体来说,我将开发方法来识别遗传异质性的各个方面,如单细胞中存在的小的单核苷酸突变和拷贝数变异区域。然后,我将重建的遗传亚克隆结构和鉴定的亚克隆群体的基因表达谱的特点。拟议的工作将产生创新的统计方法,以识别和表征癌症中的亚克隆群体,并产生可定制并应用于不同癌症类型的开源软件。最终,这些开发的方法应用于CLL将提供一个更好的了解CLL的发展和进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Fan其他文献
Jean Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean Fan', 18)}}的其他基金
Computational methods for delineating subcellular and cellular spatial transcriptional heterogeneity along developmental trajectories
沿着发育轨迹描绘亚细胞和细胞空间转录异质性的计算方法
- 批准号:
10275922 - 财政年份:2021
- 资助金额:
$ 3.41万 - 项目类别:
Computational methods for delineating subcellular and cellular spatial transcriptional heterogeneity along developmental trajectories
沿着发育轨迹描绘亚细胞和细胞空间转录异质性的计算方法
- 批准号:
10677789 - 财政年份:2021
- 资助金额:
$ 3.41万 - 项目类别:
Computational methods for delineating subcellular and cellular spatial transcriptional heterogeneity along developmental trajectories
沿着发育轨迹描绘亚细胞和细胞空间转录异质性的计算方法
- 批准号:
10474625 - 财政年份:2021
- 资助金额:
$ 3.41万 - 项目类别:
Statistical Methods for Characterizing Tumor Heterogeneity at the Single Cell Level
在单细胞水平表征肿瘤异质性的统计方法
- 批准号:
9898349 - 财政年份:2018
- 资助金额:
$ 3.41万 - 项目类别:
Computational Analysis of Subclonal Evolution in Chronic Lymphocytic Leukemia
慢性淋巴细胞白血病亚克隆进化的计算分析
- 批准号:
9259716 - 财政年份:2016
- 资助金额:
$ 3.41万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 3.41万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 3.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 3.41万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 3.41万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 3.41万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 3.41万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 3.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 3.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 3.41万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 3.41万 - 项目类别: