Somatostatin gene delivery to enhance long-term functional recovery from TBI
生长抑素基因递送可增强 TBI 的长期功能恢复
基本信息
- 批准号:8732764
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAddressAdverse effectsAffectAffectiveAmygdaloid structureAnimal ModelAnimalsAnxietyAstrocytosisAutopsyBehavior assessmentBehavioralBiological AssayBrainBrain DiseasesBrain InjuriesBrain PathologyBrain regionCaringCircadian RhythmsClinicalClinical TrialsCognitionCognition DisordersCognitiveComplementCytoprotectionDevelopmentDiabetes MellitusDiseaseElectric StimulationElectrodesEmotionalEndocrine System DiseasesEnsureEpilepsyEpileptogenesisEvaluationEvolutionExperimental DesignsExperimental ModelsFoundationsFunctional disorderGene DeliveryGene ExpressionGene TransferGenerationsGoalsGroomingHeadHealthHealth BenefitHealthcareHippocampus (Brain)Home environmentImpaired cognitionImplanted ElectrodesIncidenceIndividualInflammationInfusion proceduresInjuryIntractable EpilepsyInvestigationKindling (Neurology)LearningLong-Term CareMeasuresMediatingMemoryMethodsMilitary PersonnelModelingMood DisordersMorbidity - disease rateMotorMotor ActivityNeuraxisNeurobiologyNeurodegenerative DisordersNeurologicNeuronsNeuropeptide GeneNeuropeptidesOperative Surgical ProceduresOutcomeOutcome MeasurePathologyPatientsPatternPerformancePhysiologicalPhysiologyPre-Clinical ModelPreventionProceduresProcessProtocols documentationQuality of lifeRattusRecoveryRecovery of FunctionRehabilitation therapyResearchRodent ModelSafetySeizuresServicesSeveritiesShapesSleepSleep DisordersSomatostatinSomatostatin ReceptorSurveysSymptomsSyndromeTechniquesTestingTherapeuticTimeTranslatingTraumatic Brain InjuryTreatment EfficacyVeteransVideo RecordingViraladeno-associated viral vectoranaloganxiety statesarmbehavior testblindcognitive performancecostdisabilityefficacy testingexperiencefunctional outcomesgene therapygene transfer vectorhigh riskimmunoreactivityimprovedinjuredinnovationlong-term rehabilitationmalemild traumatic brain injurymodel developmentmotor disorderneuron lossneuropathologyneuropsychiatryneuropsychologicalnovelnovel therapeutic interventionnovel therapeuticspre-clinicalpreventpublic health relevancereceptorreceptor expressionresponsesynaptic inhibitiontreatment effectvectorvector controlviral gene deliveryyoung adult
项目摘要
The incidence of traumatic brain injury (TBI) is disproportionately high among military personnel. Even mild
TBI can have persistent adverse neurobiological effects that can continue to evolve long after the initial injury.
Seizures, spasticity, cognitive and affective disorders, sleep problems, and endocrine diseases (diabetes) are
prevalent, debilitating, and difficult to treat. Effective long-term rehabilitation will require transformative
therapeutic approaches that address the brain processes responsible for the emergence of delayed symptoms.
The delayed evolution of these problems post-TBI offers opportunities for prevention and improved long-term
outcome. A gene delivery technique we developed produces sustained over-expression of the gene for
neuropeptide somatostatin (SST) in discrete brain regions. Intracranial gene delivery using adeno-associated
viral (AAV) vectors similar to our SST vector is proving safe and effective in clinical trials for several brain
diseases. In the central nervous system SST participates in synaptic inhibition, inflammation, cognition,
emotional function, analgesia, and cytoprotection, multiple mechanisms by which it might provide positive
benefits against delayed TBI effects. Our SST gene delivery to the hippocampus prevented electrically
induced seizures from developing in 70% of rats tested in an established epilepsy model. The next step in
translating this approach to clinically useful applications is to test it in more advanced animal models of brain
injury. At the same time, determining the safety of this method will be essential for further preclinical
development. Efficacy and safety thus comprise 2 specific aims of this Small Project intended to serve as a
foundation for translational progress. To test whether efficacy extends to the delayed development of seizures
after TBI, we will combine a well-characterized rat model for closed-head TBI with the kindling seizure model in
which efficacy was first observed. Anesthetized young adult male rats will be given a controlled brain injury 10
days before receiving intracranial infusion of SST or control gene transfer vectors in hippocampus, and
permanently implanted electrodes for electrical stimulation, during a single surgery. A week later a kindling
procedure will be initiated composed of timed stimulation twice per day, using intensities sub-threshold for
seizure generation. Paired electroencephalograph (EEG) and video recordings obtained during stimulated
seizures will be scored blind offline as duplicate measures of severity and duration. Gradually over the
following days to weeks mild seizures start and become progressively more severe until reaching a fully
kindled state where the stimulation consistently elicits maximally intense seizures in untreated rats.
Therapeutic efficacy of hippocampal SST gene delivery will be reflected in reduced seizure severity or
duration, delayed progression of seizure severity, or a reduction in the maximal seizure severity that can be
consistently evoked. To examine effects of TBI, gene transfer, and kindling on memory performance sensitive
to hippocampal injury, a natural tendency of rats to explore alternating arms of a Y-shaped maze on successive
trials will be tested repeatedly throughout the study. Cognitive performance will be evaluated on multiple
challenge tasks sensitive to learning and memory ability. Natural motor function (activity, rearing, grooming),
affective states (anxiety), and circadian physiology (sleep) will be assessed from continuous home cage
infrared video. Therapeutic safety will be evaluated from comprehensive behavioral assessments, but also by
comprehensive histological analysis of brain pathology as a function of vector treatment. In addition to
markers for pathology, we will evaluate the effects of gene transfer in kindled TBI rats on spatial localization
patterns of SST receptor proteins. We propose that seizure reduction, and amelioration of progressive
cognitive and motor dysfunction post-TBI, will involve multiple efficacy mechanisms that engage several
receptor subtypes in specific subregions of the brain. This feasible and innovative Small Project opens new
avenues for improving the rehabilitation of Veterans facing decades of debilitating consequences after TBI.
在军事人员中,创伤性脑损伤(TBI)的发生率高得不成比例。即使是轻微的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL A KING其他文献
MICHAEL A KING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL A KING', 18)}}的其他基金
Somatostatin gene delivery to enhance long-term functional recovery from TBI
生长抑素基因递送可增强 TBI 的长期功能恢复
- 批准号:
9026505 - 财政年份:2014
- 资助金额:
-- - 项目类别:
The role of protein phosphatase 2A in age-related memory impairment
蛋白磷酸酶2A在年龄相关记忆障碍中的作用
- 批准号:
7683882 - 财政年份:2008
- 资助金额:
-- - 项目类别:
The role of protein phosphatase 2A in age-related memory impairment
蛋白磷酸酶2A在年龄相关记忆障碍中的作用
- 批准号:
7472906 - 财政年份:2008
- 资助金额:
-- - 项目类别:
ADENO ASSOCIATED VIRUS MEDIATED GENE THERAPY FOR AD ANIMAL MODELS
AD动物模型的腺相关病毒介导的基因治疗
- 批准号:
6360493 - 财政年份:2000
- 资助金额:
-- - 项目类别:
ADENO ASSOCIATED VIRUS MEDIATED GENE THERAPY FOR AD ANIMAL MODELS
AD动物模型的腺相关病毒介导的基因治疗
- 批准号:
6210080 - 财政年份:1991
- 资助金额:
-- - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant