Multiplexed targeting of Pseudomonas aeruginosa essential outer membrane proteins

铜绿假单胞菌必需外膜蛋白的多重靶向

基本信息

  • 批准号:
    8843773
  • 负责人:
  • 金额:
    $ 40.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-15 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

Abstract Pseudomonas aeruginosa is a major cause of intensive care unit pneumonias and the number two cause of Gram-negative bacteremia and nosocomial pneumonia. Because of its ability to evade current antibiotics or develop resistance, P. aeruginosa clinical strains are increasingly resistant to all current clinically relevant antibiotics. Yet, the current pipeline of antibiotics in general, but anti-pseudomonal agents in particular, is alarmingly empty. Much of this failure is due to the incredible challenge of finding lead compounds against P. aeruginosa for further development because of its intrinsic barriers and resistance to small molecules. Herein, we propose a new method to identify such lead compounds that circumvent these barriers by taking an approach that interfaces genomics and novel high-throughput chemical screening technologies. Using genomics, we will identify essential outer membrane proteins (OMPs) that are valid targets for antibiotic discovery, thus circumventing the need for small molecule intracellular accumulation. We will then perform chemical screening in a multiplexed fashion against strains hypersensitized to inhibitors by controlled low expression of the respective OMP. This multiplexed approach will increase the efficiency and ability to identify small molecule leads for further development. In the R21 phase of the proposal, we will identify essential outer membrane proteins (OMPs) across many different strains of P. aeruginosa under clinically relevant growth conditions using recently developed genome-wide negative selection technology. Combining this dataset with publically available proteomic studies on OMPs, we will select a core set of essential OMPs to be targeted for small molecule discovery. Further, in the R21 phase, we will develop a method for Multiplexed Targeting of Essential Proteins (MTEP), which would allow simultaneous chemical screening against numerous essential targets. We will screen a small molecule library against a pool of bar-coded, genetically engineered target-specific screening strains in which each of the essential OMP genes has been knocked-down. This controlled low expression will confer hypersensitivity to small molecule inhibitors of the respective target. We will screen against 20 OMP targets simultaneously, in contrast to parallel individual screens against each of these strains, which rapidly becomes cost-prohibitive. This multiplexed strategy couples whole cell screening with target identification. Finally, in the R33 phase of the proposal, we propose to scale up MTEP screening against a large, unique collection of diversity-oriented synthetic (DOS) compounds, to identify candidates for further development as novel anti-pseudomonal antibiotics. Thus, we will develop a method for more efficiently identifying lead small molecules against the challenging highly resistant Gram-negative pathogen P. aeruginosa and will develop several candidate scaffolds for ultimate challenge in an animal model.
摘要 铜绿假单胞菌是重症监护室肺炎的主要原因, 导致革兰氏阴性菌血症和医院获得性肺炎。因为它有躲避电流的能力 抗生素或产生耐药性,铜绿假单胞菌临床菌株对目前临床上所有 相关抗生素然而,目前的抗生素,特别是抗假单胞菌药物, 空得惊人这种失败在很大程度上是由于寻找铅化合物的令人难以置信的挑战, P.铜绿假单胞菌的进一步发展,因为其固有的障碍和耐药性的小分子。 在此,我们提出了一种新的方法来确定这样的先导化合物,通过采取这些障碍, 该方法将基因组学与新型高通量化学筛选技术相结合。使用 基因组学,我们将确定必要的外膜蛋白(OMPs)是抗生素的有效靶点 发现,从而避免了对小分子细胞内积累的需要。然后我们将表演 以多重方式对抑制剂超敏菌株进行化学筛选, 表达各自的OMP。这种多路复用的方法将提高识别的效率和能力, 小分子导致进一步发展。 在该提案的R21阶段,我们将确定跨膜的必需外膜蛋白(OMP)。 在临床相关生长条件下,使用最近开发的 全基因组负选择技术将此数据集与生物学上可用的蛋白质组学研究相结合 在OMP方面,我们将选择一组核心的必需OMP作为小分子发现的目标。 此外,在R21阶段,我们将开发一种用于必需蛋白质多重靶向的方法 这将允许针对许多基本目标同时进行化学筛选。我们将 针对条形码化的、遗传工程化的靶特异性筛选池筛选小分子文库 其中每个必需OMP基因都已被敲低的菌株。这种受控的低表达将 赋予对各自靶点的小分子抑制剂的超敏性。我们将对20 OMP进行筛选 同时靶向,与针对这些菌株中的每一种的平行单独筛选相反, 变得成本高昂。这种多重策略将全细胞筛选与靶标鉴定相结合。 最后,在建议的R33阶段,我们建议扩大MTEP筛查, 独特的多样性导向的合成(DOS)化合物的集合,以确定候选人, 开发为新型抗假单胞菌抗生素。因此,我们将开发一种方法, 鉴定针对具有挑战性的高抗性革兰氏阴性病原体P的先导小分子。 并将开发几种候选支架用于动物模型的最终挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DEBORAH T HUNG其他文献

DEBORAH T HUNG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DEBORAH T HUNG', 18)}}的其他基金

Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
  • 批准号:
    10670196
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
  • 批准号:
    10670186
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
  • 批准号:
    10670154
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
  • 批准号:
    10670185
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
  • 批准号:
    10242000
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
  • 批准号:
    10463692
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
  • 批准号:
    10242006
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
  • 批准号:
    10463687
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
  • 批准号:
    10242002
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
  • 批准号:
    10463688
  • 财政年份:
    2019
  • 资助金额:
    $ 40.23万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 40.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了