Quantitative microscopy-based rapid phenotyping and screening
基于定量显微镜的快速表型分析和筛选
基本信息
- 批准号:8964929
- 负责人:
- 金额:$ 30.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAgingAlgorithmsAllelesAnimalsAreaAutomationBiological ModelsBiologyCaenorhabditis elegansChromosome MappingComplexComputer Vision SystemsComputer softwareDataDevelopmentDevelopmental Cell BiologyDevicesDiseaseDrosophila genusEmbryoEngineeringEnvironmentEventEyeFill-ItFluorescenceFundingGenesGeneticGenetic ModelsGenetic ResearchGenetic ScreeningGenomic approachGenomicsGoalsHumanImageImaging DeviceImaging TechniquesImaging technologyInbreedingLarvaLeadLifeLinkMaintenanceManualsMapsMeasuresMental disordersMethodsMicrofluidicsMicroscopyMolecularMolecular BiologyMorphologyNematodaNervous system structureNeurobiologyNeurodegenerative DisordersNeuronsOrganismPathway interactionsPatternPhasePhenotypePhylogenyPositioning AttributeQuantitative MicroscopyQuantitative Trait LociRegulatory PathwayResearchResolutionSchizophreniaShapesSpeedSynapsesSystemTechniquesTechnologyTherapeuticTimeVisionVisualWorkZebrafishautism spectrum disorderbasedesignexperienceflyforward geneticsgenetic approachgenome sequencinghigh throughput screeninghuman diseaseimprovedin vivoin vivo imaginginnovationmutantnerve injurynervous system disordernovelprogramspublic health relevancequantitative imagingresearch studyscreeningsuccesssynaptogenesistechnology developmenttherapeutic targettooltrait
项目摘要
DESCRIPTION: Synapses are most fundamental to the function of a nervous system. C. elegans is an excellent genetic model system for finding genes and elucidating pathways because of its sequenced genome and the abundance of molecular biology tools and mutants. Due to the simplicity of its nervous system, many breakthroughs have been made in C. elegans for understanding molecular mechanisms in the patterning of the nervous system and synapse development. The current bottlenecks are in the manual and non-quantitative techniques such as visual screens, limiting both the throughput of the experiments and the phenotypes one can examine. Our long-term objective is to develop technologies and to understand how genes, age, and the environment together define and continue to remodel the nervous system of an organism. In the last funding period, we have made large progress in hardware system design (including microtechnologies and automation technologies) and software for quantitative characterization of phenotypes. The objective of this continuation project is to further engineer superior micro devices for large-scale live imaging and quantitative imaging technologies, and combine with the power of genetic and genomic approaches to study synapse development in this in vivo system; genes and pathways emerging from this study could potentially become targets of therapeutics in neurological disorders. We have shown in the previous phase of the project that quantitative microscopy-based approaches can indeed enable identification of novel genes and pathways that conventional approaches cannot. In the continuation phase, we will further optimize on-chip rapid and high-content in vivo imaging techniques, and in parallel further develop algorithms and quantitative measures for the analysis of such high-content data; we will screen based on novel synthetic phenotype unobservable by eye; we will also exploit powerful genomic techniques to identify loci and potential multigenic interactions that shape the synapse morphology. These experimental approaches will identify genes that cannot have been identified otherwise because of the difficulties associated with the phenotypical profiling, but addressed using our engineered techniques here. The approach is innovative because the technology developed here dramatically increases the throughput, sensitivity, and accuracy of the experiments, and truly enables the utility of extremely powerful genetic and genomic methods. The proposed research is significant because it fills the urgent need in high-throughput and high-content screens as well as identifying novel genes and pathways. In addition, besides the contribution to the specific neurobiology, the technologies are widely applicable to areas such as developmental cell biology, and to other small organisms such as fly larvae and zebrafish embryos.
描述:突触对于神经系统的功能来说是最基本的。秀丽隐杆线虫因其基因组测序以及丰富的分子生物学工具和突变体而成为寻找基因和阐明途径的优秀遗传模型系统。由于其神经系统的简单性,秀丽隐杆线虫在理解神经系统模式和突触发育的分子机制方面取得了许多突破。当前的瓶颈在于手动和非定量技术(例如视觉筛选),限制了实验的吞吐量和可以检查的表型。我们的长期目标是开发技术并了解基因、年龄和环境如何共同定义并继续重塑生物体的神经系统。在上一个资助期间,我们在硬件系统设计(包括微技术和自动化技术)和表型定量表征软件方面取得了巨大进展。该延续项目的目标是进一步设计用于大规模实时成像和定量成像技术的卓越微型设备,并结合遗传和基因组方法的力量来研究该体内系统中的突触发育;这项研究中出现的基因和通路可能成为神经系统疾病的治疗目标。 我们在该项目的前一阶段已经证明,基于定量显微镜的方法确实可以识别传统方法无法识别的新基因和途径。在延续阶段,我们将进一步优化片上快速、高内涵的活体成像技术,同时进一步开发用于分析此类高内涵数据的算法和定量措施;我们将根据肉眼无法观察到的新型合成表型进行筛选;我们还将利用强大的基因组技术来识别基因座和塑造突触形态的潜在多基因相互作用。这些实验方法将识别由于与表型分析相关的困难而无法以其他方式识别的基因,但可以使用我们的工程技术来解决。该方法具有创新性,因为这里开发的技术极大地提高了实验的通量、灵敏度和准确性,并真正实现了极其强大的遗传和基因组方法的实用性。拟议的研究意义重大,因为它满足了高通量和高内涵筛选以及识别新基因和途径的迫切需求。此外,除了对特定神经生物学的贡献外,这些技术还广泛适用于发育细胞生物学等领域,以及蝇幼虫和斑马鱼胚胎等其他小型生物体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hang Lu其他文献
Hang Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hang Lu', 18)}}的其他基金
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 30.71万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 30.71万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
9914432 - 财政年份:2019
- 资助金额:
$ 30.71万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
10063920 - 财政年份:2019
- 资助金额:
$ 30.71万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
10295765 - 财政年份:2019
- 资助金额:
$ 30.71万 - 项目类别:
Functional Analysis of Whole-Brain Dynamics in Learning
学习中全脑动态的功能分析
- 批准号:
10527358 - 财政年份:2019
- 资助金额:
$ 30.71万 - 项目类别:
Administrative Supplement: Systems variation underlying the genetics of aging
行政补充:衰老遗传学背后的系统变异
- 批准号:
9719249 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
- 批准号:
9927549 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
- 批准号:
9369804 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
Microfluidic assays for hyper-reactive platelets in diabetes
糖尿病高反应性血小板的微流控检测
- 批准号:
9199213 - 财政年份:2016
- 资助金额:
$ 30.71万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 30.71万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 30.71万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 30.71万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 30.71万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 30.71万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 30.71万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 30.71万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




