Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
基本信息
- 批准号:10295765
- 负责人:
- 金额:$ 47.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAnatomyAnimal ModelAnimalsAreaBehaviorBehavioralBiochemicalBrainBrain imagingBrain regionCaenorhabditis elegansCellsCharacteristicsCommunicationComplexDataDefectDevelopmentDimensionsEngineeringExhibitsFoodFoundationsGeneticGenetic IdentityGleanGoalsHeadHumanImageImpairmentIndividualInterneuronsInterventionInvertebratesLearningLearning ModuleMapsMeasuresMethodsMissionModelingMolecularMolecular GeneticsNematodaNervous System PhysiologyNervous system structureNeuronsNeurosciencesOlfactory LearningOpticsOrganismOutcomePatternPlayProcessPropertyPsychophysicsRegulationResearchResolutionRoleSensorySensory ProcessSmell PerceptionStructureSystemSystems AnalysisTaste PerceptionTechniquesTestingTherapeuticTimeTrainingWorkbehavior testconnectomedesignexperiencegenetic makeupin vivo calcium imaginginnovationinsightlearned behaviorlearning abilitynervous system disorderpathogenic bacteriapreventrelating to nervous systemsensory inputspatiotemporaltemporal measurementtherapy designtool
项目摘要
PROJECT SUMMARY
Learning is a complex process, and likely involves many areas of the brain that detect and process sensory
inputs, integrate experience, and display behavior. Consistently, various neurological diseases that impair
different brain areas are associated with profound defects in learning. Thus, bridging different spatial scales
and understanding the dynamics of different brain regions are essential to understanding how learning occurs
and potentially designing strategies to mitigate learning deficiency. However, it is currently not possible to
achieve these goals in most experimental systems, and our understanding of learning is limited by the
technical approaches by which either local circuit and cellular properties or coarse psychophysical
parameters underlying learning are measured. Here, we propose to address these fundamental questions in
a reduced system – the nervous system of the nematode C. elegans. The rationale is that the wiring and
genetic make-up of this network are well known, probing whole-brain dynamics with single-cell resolution
with exquisite temporal resolution is technically ready for C. elegans, and the fundamental principles for the
development and the function of the nervous system are well conserved between C. elegans and more
complex animal models. Further, C. elegans exhibits many forms of learning, similar to those displayed by
higher organisms in behavioral characteristics and molecular cellular underpinnings. Particularly, we will use
an olfactory learning paradigm whereby C. elegans learns to avoid the odorants of pathogenic bacteria, a
type of learning similar to the Garcia effect through which many animals, including humans, learn to avoid
the smell and/or taste of a food that makes them ill. Our long-term goal is to understand how learning is
encoded and executed by the function of the whole brain, and to inform the design of potential therapeutic
strategies. The central hypothesis of this project is that learning engages global activity and the learned
information is encoded in distinct functional modules. Specifically, we will test whether learned information
is encoded in the learning-dependent changes in the activity patterns of individual functional modules and/or
the interactions among the modules. To this end, we aim to image and analyze multi-cell and whole-brain
dynamics under naive and learned conditions to characterize how learning alters the structure of the brain
activities; further, we will introduce perturbations to the whole-brain dynamics and examine the consequences
for learning. This work is innovative because (1) it brings a conceptual advance to understanding learning
across scales, (2) it introduces technical advancement in whole-brain imaging and analyses, and (3) it
demonstrates perturbation strategies for altering whole-brain dynamics that have behavioral consequences.
It is significant, because it tests several highly plausible and likely conserved cellular and whole-brain
dynamic models for learning and examine their behavioral consequences, it informs and facilitates learning
studies in other systems, and it paves the way for designing interventions.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hang Lu其他文献
Hang Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hang Lu', 18)}}的其他基金
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 47.63万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 47.63万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
10063920 - 财政年份:2019
- 资助金额:
$ 47.63万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
9914432 - 财政年份:2019
- 资助金额:
$ 47.63万 - 项目类别:
Functional Analysis of Whole-Brain Dynamics in Learning
学习中全脑动态的功能分析
- 批准号:
10527358 - 财政年份:2019
- 资助金额:
$ 47.63万 - 项目类别:
Administrative Supplement: Systems variation underlying the genetics of aging
行政补充:衰老遗传学背后的系统变异
- 批准号:
9719249 - 财政年份:2017
- 资助金额:
$ 47.63万 - 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
- 批准号:
9927549 - 财政年份:2017
- 资助金额:
$ 47.63万 - 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
- 批准号:
9369804 - 财政年份:2017
- 资助金额:
$ 47.63万 - 项目类别:
Microfluidic assays for hyper-reactive platelets in diabetes
糖尿病高反应性血小板的微流控检测
- 批准号:
9199213 - 财政年份:2016
- 资助金额:
$ 47.63万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 47.63万 - 项目类别:
Research Grant














{{item.name}}会员




