A Systems Biology Approach to Study Cardiac Arrhythmias: iPS Cells and In Silico Modeling
研究心律失常的系统生物学方法:iPS 细胞和计算机模拟
基本信息
- 批准号:9143165
- 负责人:
- 金额:$ 75.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAffectAlgorithmsAreaArrhythmiaBioinformaticsBiological AssayBiologyCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCell LineCellsCellular biologyClinicalClinical DataCollaborationsComplexComputational algorithmComputer SimulationDataDependenceDiseaseDisease modelDisease susceptibilityDissectionElectrocardiogramElectrophysiology (science)Epigenetic ProcessFailureGenesGeneticGenetic HeterogeneityGenetic VariationGenomicsGenotypeGoalsHealthHeart DiseasesHumanIn VitroIndividualInterdisciplinary StudyIon ChannelKineticsLifeLong QT SyndromeMeasurementModelingMolecularMolecular ConformationMolecular GeneticsNRG3 geneNational Heart, Lung, and Blood InstitutePathogenesisPatientsPharmaceutical PreparationsPharmacogenomicsPharmacotherapyPhenotypePopulationPositioning AttributePreclinical Drug EvaluationPredispositionPropertyProtocols documentationRecruitment ActivityResearch PersonnelRiskSamplingSeverity of illnessSourceSpecificitySystemSystems BiologyTechnologyTherapeuticTherapeutic InterventionTimeTissuesTitrationsVariantbasedata modelingdesigndrug efficacydrug sensitivitygenetic profilinggenetic variantgenomic datagenotyped patientsheart electrical activityhuman diseaseimprovedindividual patientinduced pluripotent stem cellmultidisciplinarynovelpersonalized approachpersonalized medicinepre-clinicalpredicting responseprototyperesearch studyresponsestem cell biologysudden cardiac deathtargeted treatmenttranscriptomicstreatment strategyvirtualvoltage
项目摘要
DESCRIPTION (provided by applicant): Long QT syndrome is the most common cardiac arrhythmic disorder, predisposing to sudden cardiac death. There is tremendous genetic heterogeneity leading to long QT syndrome, which leads to considerable variations in disease severity and clinical course. Drug treatments are often ineffective, producing adverse effects in certain populations and prediction of the risk of sudden cardiac death remains fairly primitive. The recent advent of new technological breakthroughs, such as induced pluripotent stem cells (iPSCs), provides an unprecedented opportunity to study associations between genetic variability, drug responsiveness, and disease susceptibility. In addition, the biology of long QT-induced arrhythmia is largely quantifiable and thus amendable to a systems biology approach. The overarching goal of our Systems Biology Collaborative R01 Proposal is to develop an integrative experimental and computational approach to predict patient specific drug responses. To this end, we propose to utilize experimental data from patient-specific iPSC-derived cardiomyocytes (iPSC-CMs) in conjunction with clinical and genomic data, to construct the first, to our knowledge, patient-specific computational model of cardiac electrical activity. We hypothesize that we can use this model to improve our capability to predict arrhythmia susceptibility based on patient genotype as well as drug-response phenotypes associated with genetic variations in silico. We have assembled a team of highly accomplished researchers in cardiac stem cell biology, genomics, pharmacogenomics, molecular genetics/epigenetics, bioinformatics, and in silico modeling. We are well positioned to achieve the project goals within five years. The ability to predict QT response of an individual patient based on their genetic profile would be a novel personalized approach to better understand the mechanisms underlying sudden cardiac death that could ultimately revolutionize treatment strategies.
描述(由申请人提供):长QT综合征是最常见的心脏病性疾病,易导致心源性猝死。存在导致长QT综合征的巨大遗传异质性,这导致疾病严重程度和临床病程的相当大的变化。药物治疗通常无效,在某些人群中产生不良影响,对心脏性猝死风险的预测仍然相当原始。最近出现的新技术突破,如诱导多能干细胞(iPSC),提供了一个前所未有的机会,研究遗传变异性,药物反应性和疾病易感性之间的关联。此外,长QT诱发的心律失常的生物学在很大程度上是可量化的,因此可采用系统生物学方法。我们的系统生物学协作R 01提案的总体目标是开发一种综合的实验和计算方法来预测患者的特定药物反应。为此,我们建议利用来自患者特异性iPSC衍生的心肌细胞(iPSC-CM)的实验数据结合临床和基因组数据来构建第一个据我们所知的患者特异性心脏电活动计算模型。我们假设,我们可以使用这个模型,以提高我们的能力,预测心律失常的易感性的基础上,患者的基因型以及药物反应表型与遗传变异的硅。我们已经组建了一支在心脏干细胞生物学、基因组学、药物基因组学、分子遗传学/表观遗传学、生物信息学和计算机建模方面成就卓著的研究人员团队。我们有能力在五年内实现项目目标。根据个体患者的遗传特征预测其QT反应的能力将是一种新的个性化方法,可以更好地了解心源性猝死的潜在机制,最终可能彻底改变治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUSS BIAGIO ALTMAN其他文献
RUSS BIAGIO ALTMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUSS BIAGIO ALTMAN', 18)}}的其他基金
Tracking the opioid epidemic with social media: an early warning system
利用社交媒体追踪阿片类药物的流行:预警系统
- 批准号:
10588908 - 财政年份:2022
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science
加州大学旧金山分校-斯坦福大学监管科学卓越中心
- 批准号:
10005040 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science
加州大学旧金山分校-斯坦福大学监管科学卓越中心
- 批准号:
9524938 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science
加州大学旧金山分校-斯坦福大学监管科学卓越中心
- 批准号:
9931720 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science
加州大学旧金山分校-斯坦福大学监管科学卓越中心
- 批准号:
10325446 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science and Innovation
加州大学旧金山分校-斯坦福大学监管科学与创新卓越中心
- 批准号:
10690881 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science and Innovation
加州大学旧金山分校-斯坦福大学监管科学与创新卓越中心
- 批准号:
10755484 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science and Innovation
加州大学旧金山分校-斯坦福大学监管科学与创新卓越中心
- 批准号:
10615295 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science and Innovation
加州大学旧金山分校-斯坦福大学监管科学与创新卓越中心
- 批准号:
10610497 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
UCSF-Stanford Center of Excellence in Regulatory Science
加州大学旧金山分校-斯坦福大学监管科学卓越中心
- 批准号:
10089673 - 财政年份:2016
- 资助金额:
$ 75.86万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 75.86万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 75.86万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 75.86万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 75.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists