Drug repurposing for Alzheimer's disease using structural systems pharmacology
利用结构系统药理学重新调整阿尔茨海默病的药物用途
基本信息
- 批准号:9559932
- 负责人:
- 金额:$ 77.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2018-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdverse effectsAlgorithmsAlzheimer&aposs DiseaseAmyloidAmyloid beta-ProteinAnimal ModelAntineoplastic AgentsBindingBioinformaticsBiologicalBiophysicsCASP2 geneCell modelChemicalsClinicalCollaborationsComplexComputer SimulationComputing MethodologiesDataDementiaDiazoxideDiseaseDisease PathwayDrug CombinationsDrug TargetingFDA approvedFailureGenesHealthHumanInflammationLaboratoriesLeadLinkMachine LearningMethodsModelingPathologic ProcessesPathologyPathway interactionsPerformancePharmaceutical PreparationsPharmacologyPhenotypePhosphotransferasesPrevalenceProcessProteinsProteomeResolutionSystemSystems BiologyTestingTherapeuticbasebeta-site APP cleaving enzyme 1computer frameworkcostdrug discoveryeffective therapyexperimental studygenome wide association studygenome-widegenome-wide analysisimprovedinnovationmultiple omicsnetwork modelsnew therapeutic targetnovelpre-clinical trialprecision medicinepreclinical developmentresponsesuccesstau Proteins
项目摘要
Abstract
Alzheimer’s disease (AD) is a triple health threat – with soaring prevalence, enormous costs and lack of
effective treatment. However, efforts in drug discovery and repurposing for the treatment of AD have had
limited success. The failure is largely attributed to the adoption of a reductionist model of “one-drug-one-gene-
one-disease”. As AD is a multi-facet complex disease, a new treatment approach is urgently needed to
simultaneously target multiple pathological processes responsible for the onset and progress of AD, some of
which are also common to other diseases that cause dementia. In this application, we will develop an
innovative translational bioinformatics approach to addressing challenges in AD drug discovery. Our approach
is based on a new paradigm of systems pharmacology, which focuses on defining multiple targets to a single
drug or a drug combination, and studying the effect of the drug(s) on perturbing disease-causing networks.
Over the last ten years, we have developed a novel structural systems pharmacology (SSP) platform that can
predict genome-wide high-resolution protein-chemical interactions and correlate molecular interactions with
phenotype responses. The SSP platform synergistically combines novel methods from machine learning,
bioinformatics, biophysics, and systems biology. We have successfully applied the SSP platform to drug
repurposing, polypharmacology, side effect prediction, precision medicine, and Genome-Wide Association
Studies. Building on our successful proof-of-concept studies, and in close collaborations with experimental
laboratories, we will develop, and rigorously test a novel SSP approach to AD drug repurposing and
polypharmacology. Firstly, we will develop a multi-layered drug-gene-pathway-disease-side effect network
model (MULAN) that links FDA-approved drugs with dementia and side effects through protein-chemical
interactions, gene-disease associations, chemical-disease associations, and dementia-associated biological
pathways through integrating multiple omics data. Secondly, we will improve and apply our proven successful
SSP platform, which can accurately infer novel relations from sparse and noisy MULAN, to identify safe FDA-
approved drugs that can be repurposed for AD treatment. Finally, we will experimentally test FDA-approved
drugs identified for their binding activity of drug targets and anti-AD potency in cell and animal models. The
successful completion of this project will provide an integrated computational modeling framework for AD drug
repurposing and polypharmacology as well as identify novel targeted anti-AD therapeutics toward pre-clinical
trials.
摘要
阿尔茨海默病(AD)是一种三重健康威胁-患病率飙升,成本巨大,缺乏治疗。
有效治疗。然而,在药物发现和再利用以治疗AD方面的努力已经取得了进展。
有限的成功。失败的主要原因是采用了“一药一基因”的简化模型,
一种疾病”。由于AD是一种多方面的复杂疾病,因此迫切需要一种新的治疗方法,
同时靶向导致AD发病和进展的多种病理过程,
这也是导致痴呆症的其他疾病的常见原因。在这个应用程序中,我们将开发一个
创新的翻译生物信息学方法,以应对AD药物发现的挑战。我们的方法
基于系统药理学的新范式,其重点是将多个靶点定义为单个靶点。
药物或药物组合,并研究药物对扰乱致病网络的影响。
在过去的十年中,我们开发了一种新的结构系统药理学(SSP)平台,可以
预测全基因组高分辨率蛋白质化学相互作用,并将分子相互作用与
表型反应SSP平台协同结合了机器学习的新方法,
生物信息学、生物物理学和系统生物学。我们已经成功地将SSP平台应用于药物
再利用,多药理学,副作用预测,精准医学和全基因组协会
问题研究在我们成功的概念验证研究的基础上,
实验室,我们将开发并严格测试一种新的SSP方法来重新利用AD药物,
多元药理学首先,我们将建立一个多层次的药物-基因-通路-疾病-副作用网络
该模型(MULAN)通过蛋白质化学物质将FDA批准的药物与痴呆症和副作用联系起来,
相互作用,基因-疾病关联,化学-疾病关联,以及痴呆相关的生物
通过整合多个组学数据的途径。其次,我们将改进和应用我们的成功经验,
SSP平台,它可以准确地从稀疏和嘈杂的MULAN中推断出新的关系,以识别安全的FDA-
批准的药物,可以重新用于AD治疗。最后,我们将实验性地测试FDA批准的
在细胞和动物模型中鉴定药物靶点结合活性和抗AD效力的药物。的
该项目成功完成将为AD药物提供一个完整的计算建模框架
再利用和多药理学以及确定新的靶向抗AD治疗药物,
审判
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
VariFunNet, an integrated multiscale modeling framework to study the effects of rare non-coding variants in Genome-Wide Association Studies: applied to Alzheimer's Disease.
- DOI:10.1109/bibm.2017.8217995
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Liu Q;Chen C;Gao A;Tong HH;Xie L;Alzheimer’s Disease Neuroimaging Initiative
- 通讯作者:Alzheimer’s Disease Neuroimaging Initiative
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Xie其他文献
Lei Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Xie', 18)}}的其他基金
Drug repurposing for Alzheimer's disease using structural systems pharmacology.
使用结构系统药理学重新调整阿尔茨海默病的药物用途。
- 批准号:
10431792 - 财政年份:2018
- 资助金额:
$ 77.08万 - 项目类别:
AI-powered chemical proteomics for drug discovery targeting orphan proteins
基于人工智能的化学蛋白质组学,用于针对孤儿蛋白的药物发现
- 批准号:
10651934 - 财政年份:2017
- 资助金额:
$ 77.08万 - 项目类别:
AI-Powered Quantitative Systems Pharmacology for AD Drug Repurposing
人工智能驱动的 AD 药物再利用定量系统药理学
- 批准号:
10659412 - 财政年份:2017
- 资助金额:
$ 77.08万 - 项目类别:
Anti-virulence drug repurposing using structural systems pharmacology
利用结构系统药理学重新利用抗毒药物
- 批准号:
9338340 - 财政年份:2016
- 资助金额:
$ 77.08万 - 项目类别:
Anti-virulence drug repurposing using structural systems pharmacology
利用结构系统药理学重新利用抗毒药物
- 批准号:
9204993 - 财政年份:2016
- 资助金额:
$ 77.08万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 77.08万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 77.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 77.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 77.08万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 77.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 77.08万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 77.08万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 77.08万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 77.08万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 77.08万 - 项目类别:
Standard Grant