Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs

通过合成类似物解开细菌细胞壁的生物合成和传感

基本信息

  • 批准号:
    9382168
  • 负责人:
  • 金额:
    $ 38.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Every year in the United States, over two million people are afflicted with bacterial infections resistant to FDA-approved antibiotics. More than 23,000 of these patients die as a result of such infections. The rapid surge in drug-resistant bacteria has now become one of the primary public health crises of the 21st century. The large majority of antibiotics in use today were discovered many decades ago. In order to counter the rapid rise in drug-resistance in bacteria, new drug targets and diagnostic tests are urgently needed. The bacterial cell wall has proven to be a rich source of antibiotic drug discovery. However, there are fundamental aspects of bacterial cell wall assembly and its interaction with the host organism that are yet to be fully elucidated. Our proposed strategies will use synthetic chemistry as a platform to construct cell wall analogs that metabolically label live bacteria and mimic key aspects of cell wall architecture. We anticipate that interrogation of cell wall remodeling and processing in pathogenic bacteria will guide the design of next-generation antibiotics that circumvent resistance mechanisms. Furthermore, the development of probes to systematically characterize cell wall sensing and host distribution will add fundamental knowledge to bacterial pathogenesis and human microbiome maintenance. We will focus on: (1) the contribution of individual enzymes to the overall drug resistant phenotype in response to antibiotics in live bacterial cells, (2) key interactions by bacterial membrane-anchored proteins to Lipid II (the bottle-neck point of cell wall biosynthesis), (3) the molecular recognition of cell wall by cell wall receptors on human immune cells, and (4) the processing of disseminated bacterial-derived membrane vesicles, which contain cell wall fragments, by human immune cells.
项目摘要 在美国,每年有超过两百万人受到细菌感染的折磨。 对FDA批准的抗生素有抗药性这些患者中有23,000多人死于此类疾病。 感染.抗药性细菌的迅速激增现在已经成为公众关注的主要问题之一 世纪的健康危机。今天使用的绝大多数抗生素都是在 在几十年前为了应对细菌耐药性的迅速上升, 迫切需要目标和诊断测试。细菌细胞壁被证明是一种丰富的 抗生素药物发现的来源。然而,细菌细胞的基本方面 壁组装及其与宿主生物体的相互作用尚未完全阐明。我们 所提出的策略将使用合成化学作为构建细胞壁类似物的平台, 代谢标记活细菌并模拟细胞壁结构的关键方面。我们预计 对病原菌细胞壁重塑和加工的研究将指导 设计下一代抗生素,规避耐药机制。而且 开发系统表征细胞壁传感和宿主分布的探针将 增加细菌发病机理和人类微生物组维持的基础知识。 我们将重点关注:(1)单个酶对整体耐药的贡献 表型响应于活细菌细胞中的抗生素,(2)细菌与抗生素之间的关键相互作用 膜锚定蛋白与脂质II(细胞壁生物合成的瓶颈点),(3) 人免疫细胞上的细胞壁受体对细胞壁的分子识别,和(4) 处理散布的细菌衍生的膜囊泡,其含有细胞壁 人类免疫细胞产生的片段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcos M. Pires其他文献

emNeisseria gonorrhoeae/em scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation
淋病奈瑟菌(Neisseria gonorrhoeae)清除宿主唾液酸以进行 Siglec 介导的、补体非依赖性的中性粒细胞活化抑制
  • DOI:
    10.1128/mbio.00119-24
  • 发表时间:
    2024-03-29
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Amaris J. Cardenas;Keena S. Thomas;Mary W. Broden;Noel J. Ferraro;Marcos M. Pires;Constance M. John;Gary A. Jarvis;Alison K. Criss
  • 通讯作者:
    Alison K. Criss
Genetic Determinants of Surface Accessibility in emStaphylococcus aureus/em
金黄色葡萄球菌表面可及性的遗传决定因素
  • DOI:
    10.1021/acs.bioconjchem.2c00173
  • 发表时间:
    2022-05-18
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Noel J. Ferraro;Marcos M. Pires
  • 通讯作者:
    Marcos M. Pires

Marcos M. Pires的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcos M. Pires', 18)}}的其他基金

Structural Determinants of Permeation Barriers in Escherichia coli
大肠杆菌渗透屏障的结构决定因素
  • 批准号:
    10749251
  • 财政年份:
    2023
  • 资助金额:
    $ 38.69万
  • 项目类别:
Bacterial and Molecular Determinants of Mycobacterial Impermeability
分枝杆菌不渗透性的细菌和分子决定因素
  • 批准号:
    10749613
  • 财政年份:
    2023
  • 资助金额:
    $ 38.69万
  • 项目类别:
Chemical Remodeling of Cell Surface to Enhance the Accumulation of Therapeutic Bacteria to Tumors
细胞表面的化学重塑以增强治疗性细菌对肿瘤的积累
  • 批准号:
    10535464
  • 财政年份:
    2022
  • 资助金额:
    $ 38.69万
  • 项目类别:
Chemical Remodeling of Cell Surface to Enhance the Accumulation of Therapeutic Bacteria to Tumors
细胞表面的化学重塑以增强治疗性细菌对肿瘤的积累
  • 批准号:
    10391986
  • 财政年份:
    2022
  • 资助金额:
    $ 38.69万
  • 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
  • 批准号:
    10381814
  • 财政年份:
    2017
  • 资助金额:
    $ 38.69万
  • 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
  • 批准号:
    10552391
  • 财政年份:
    2017
  • 资助金额:
    $ 38.69万
  • 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
  • 批准号:
    10242123
  • 财政年份:
    2017
  • 资助金额:
    $ 38.69万
  • 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
  • 批准号:
    10112721
  • 财政年份:
    2017
  • 资助金额:
    $ 38.69万
  • 项目类别:
Development of a Novel Artificial Diiron Protein with N-hydroxylase Activity
具有 N-羟化酶活性的新型人工二铁蛋白的开发
  • 批准号:
    8004780
  • 财政年份:
    2010
  • 资助金额:
    $ 38.69万
  • 项目类别:

相似海外基金

Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10590611
  • 财政年份:
    2022
  • 资助金额:
    $ 38.69万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
  • 批准号:
    10706006
  • 财政年份:
    2022
  • 资助金额:
    $ 38.69万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10368975
  • 财政年份:
    2021
  • 资助金额:
    $ 38.69万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10365254
  • 财政年份:
    2021
  • 资助金额:
    $ 38.69万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10202896
  • 财政年份:
    2021
  • 资助金额:
    $ 38.69万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10531570
  • 财政年份:
    2021
  • 资助金额:
    $ 38.69万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10541847
  • 财政年份:
    2019
  • 资助金额:
    $ 38.69万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10319573
  • 财政年份:
    2019
  • 资助金额:
    $ 38.69万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10062790
  • 财政年份:
    2019
  • 资助金额:
    $ 38.69万
  • 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
  • 批准号:
    DE170100628
  • 财政年份:
    2017
  • 资助金额:
    $ 38.69万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了