Integrative statistical models for TNBC biomarker discovery

TNBC 生物标志物发现的综合统计模型

基本信息

  • 批准号:
    9314546
  • 负责人:
  • 金额:
    $ 35.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-12 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The “triple negative breast cancer” (TNBC), refers to a heterogeneous collection of the tumors that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2 amplification. Unlike, ER- positive and HER2-amplified breast cancers; the lack of high frequency oncogenic driver mutations in TNBC has limited treatment options for women with the disease. However, TNBCs have higher rates of clinical response to pre-surgical (neo-adjuvant) chemotherapy, despite the lack of targeted therapy. Despite better responses to chemotherapy, TNBC patients still have a higher rate of distant recurrence and a poorer prognosis than women with other breast cancer subtypes. TNBC patients who experience a pathologic complete response (pCR) to neoadjuvant chemotherapy have significant improvements in both disease-free and overall survival compared with patients with residual invasive disease. In contrast, those patients with residual disease have a much poorer prognosis and are 6 times more likely to have recurrence and 12 times more likely to die. While 30% of patients with TNBC benefit from neoadjuvant chemotherapy, currently there is no effective way to identify those TNBC patients that would benefit most. TNBC's heterogeneous response to chemotherapy suggests that different TNBC subtypes may exist and are associated drug responses. We recently developed a novel gene expression signature with 2188 genes based on a new algorithm to classify TNBCs into six subtypes and implemented the algorithm in the software “TNBCtype”. Our study showed that each TNBC subtype displays a unique biology. Furthermore, we identified representative TNBC cell line models for these subtypes that display differential sensitivity to targeted and chemotherapy. Therefore, to translate our pre-clinical results, there is a critical need to develop new strategies to develop a refined, reproducible, robust and clinically useful subtyping tool to identify TNBC patients most likely to benefit from neoadjuvant chemotherapy, and discover the new biomarkers for targeted treatments in patients that are resistant to chemotherapy. We propose the following specific aims to address these challenges: (1) develop and validate a robust TNBC subtyping model; (2) identify TNBC subtype specific chemotherapy response gene signatures; (3) discover TNBC chemotherapy resistant biomarkers by integrative genomic approach.
项目总结/摘要 “三阴性乳腺癌”(TNBC)是指缺乏免疫原性的肿瘤的异质性集合。 雌激素受体(ER)、孕激素受体(PR)的表达和HER 2扩增。不像,呃- 阳性和HER 2扩增乳腺癌; TNBC中缺乏高频致癌驱动突变 对患有这种疾病的妇女来说,治疗选择有限。然而,TNBC具有更高的临床 对术前(新辅助)化疗的反应,尽管缺乏靶向治疗。尽管更好 尽管TNBC患者对化疗有反应,但其远处复发率仍较高, 与其他乳腺癌亚型相比, 对新辅助化疗有病理完全缓解(pCR)的TNBC患者, 与有残留癌细胞的患者相比, 侵袭性疾病相反,那些有残留病变的患者预后差得多, 复发的可能性是正常人的1倍,死亡的可能性是正常人的12倍。虽然30%的TNBC患者受益 从新辅助化疗,目前还没有有效的方法来确定那些TNBC患者, 受益最多。 TNBC对化疗的异质性反应表明可能存在不同的TNBC亚型, 与药物反应有关。我们最近开发了一种新的基因表达标签, 基于一种新的算法将TNBC分为六种亚型,并在软件中实现了该算法 “TNBC类型”。我们的研究表明,每个TNBC亚型都显示出独特的生物学。此外,我们发现 这些亚型的代表性TNBC细胞系模型显示出对靶向的和靶向的TNBC细胞系的不同敏感性, 化疗 因此,为了转化我们的临床前结果,迫切需要开发新的策略来开发 一种精细、可重复、稳健且临床上有用的亚型分型工具,用于识别最有可能受益的TNBC患者 从新辅助化疗,并发现新的生物标志物的靶向治疗的患者, 对化疗有抵抗力我们提出以下具体目标来应对这些挑战:(1)发展 并验证稳健的TNBC亚型分型模型;(2)鉴定TNBC亚型特异性化疗反应基因 (3)通过整合基因组方法发现TNBC化疗抗性生物标志物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi Steven Chen其他文献

Xi Steven Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi Steven Chen', 18)}}的其他基金

CORE C (Biostatistics and Bioinformatics Core)
CORE C(生物统计学和生物信息学核心)
  • 批准号:
    10407750
  • 财政年份:
    2022
  • 资助金额:
    $ 35.31万
  • 项目类别:
CORE C (Biostatistics and Bioinformatics Core)
CORE C(生物统计学和生物信息学核心)
  • 批准号:
    10662333
  • 财政年份:
    2022
  • 资助金额:
    $ 35.31万
  • 项目类别:
Biostatistics and Bioinformatics Shared Resources
生物统计学和生物信息学共享资源
  • 批准号:
    10190858
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
Biostatistics and Bioinformatics Shared Resources
生物统计学和生物信息学共享资源
  • 批准号:
    9789582
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
Biostatistics and Bioinformatics Shared Resources
生物统计学和生物信息学共享资源
  • 批准号:
    10670839
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
Biostatistics and Bioinformatics Shared Resources
生物统计学和生物信息学共享资源
  • 批准号:
    10443634
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
Biostatistics and Bioinformatics Shared Resources
生物统计学和生物信息学共享资源
  • 批准号:
    9975820
  • 财政年份:
  • 资助金额:
    $ 35.31万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了