The SyngenicDNA and μPOET Platform: Overcoming Innate Barriers to Genetic Engineering in Bacteria.
SyngenicDNA 和 μPOET 平台:克服细菌基因工程的先天障碍。
基本信息
- 批准号:9369398
- 负责人:
- 金额:$ 156.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-08 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:BacteriaBacterial ModelBacterial PhysiologyBiotechnologyBypassCellsClustered Regularly Interspaced Short Palindromic RepeatsCollectionCommon CoreCommunitiesComplexComputer SimulationDNADNA MethylationDatabasesDefense MechanismsDevelopmentDiseaseEcosystemElectroporationEnvironmentEpigenetic ProcessEquipmentGenerationsGeneticGenetic EngineeringGenetic TemplateGoalsHabitatsHealthHumanHuman EngineeringHuman MicrobiomeIncomeIndividualIndustrializationInstitutesInvestigationLaboratoriesLiquid substanceMedicineMetabolismMethodologyMethodsMethylationMicrobeMicrobiologyMicrofluidicsModificationOralPathogenesisPlasmidsProcessResearchResearch PersonnelResourcesRoboticsRoleSingle Nucleotide PolymorphismSiteSkinSystemTaxonomyTechnologyTimeUnited States National Institutes of Healthbacterial geneticsbasedesignfield studyinnovationinstrumentinterestmembermicrobialmicrobiomenew technologynext generation sequencingnovelnovel strategiesoperationoral microbiomepreventrepositoryresearch and developmentscreeningsynthetic constructtoolvirtual
项目摘要
Genetic engineering is a powerful approach for discovering fundamental aspects of bacterial physiology,
metabolism, and pathogenesis. The problem is the vast majority of bacteria that can be grown in a laboratory
remain genetically intractable, beyond the power of genetics for elucidating function or for engineering for human
use. The challenge of genetic intractability stymies basic-, synthetic-, and translational-microbiology research
and development. Researchers spend years constructing ad hoc genetic systems one species at a time, an
arduous and expensive process. Here, we introduce a groundbreaking, rapid, broadly applicable technology for
rendering any cultivable bacterial species genetically tractable, irrespective of taxonomic lineage or genetic and
physical barriers. We expect our approach will transform microbial research in medicine, the environment, and
biotechnology. Our SyngenicDNA-μPOET (Microfluidic Parametric Optimization of Electroporation based
Transformation) platform is a combination of two entirely novel, broadly applicable, and currently unavailable
technologies, co-operatively designed to overcome the two underlying causes of genetic intractability within most
bacteria. The first new technology, SyngenicDNA, overcomes the complex bacterial defense mechanisms that
degrade non-self DNA by using a rapid host-mimicking strategy. This novel strategy recodes the DNA of any
genetic tool (e.g., plasmids or transposons) to eliminate target non-self signatures recognized by a specific
bacterial strain of interest, thus preventing DNA degradation by innate Restriction Modification (RM) and
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems. The second new
technology, μPOET, overcomes the physical barrier to non-self DNA entry using microfluidics and robotics.
μPOET leverages high-throughput microfluidic electroporation to create a transformation platform compatible
with 96-well plate liquid handling systems to enable rapid screening of electroporation conditions, two to three
orders of magnitude faster than traditional cuvette based approaches. Once established, the SyngenicDNA-
μPOET platform will be a resource allowing the generation of genetic tractability in virtually any cultivable
bacterial species over the span of weeks, rather than years. As proof of principle, we will demonstrate the power
of the SyngenicDNA-μPOET platform on the human oral microbiome. The paucity of genetically tractable
bacteria is a formidable challenge to deciphering the functional attributes of members of the human microbiome.
We will expand the current Human Oral Microbiome Database (HOMD) and establish the Human Oral
Microbiome Culture (HOMC) collection: an initial repository of 200 model bacterial strains representing species
across six different phyla within the oral microbiome, each made genetically tractable using the SyngenicDNA-
μPOET platform. This resource will rapidly accelerate fundamental investigations into the role of oral species in
human health and disease. Our overarching goal is to provide a universally applicable methodology to rapidly
render most bacteria genetically tractable.
基因工程是发现细菌生理学基本方面的有力方法,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher D Johnston其他文献
The role of the Cronobacter sakazakii ProP C-terminal coiled coil domain in osmotolerance
- DOI:
10.1186/s13099-014-0046-9 - 发表时间:
2014-12-16 - 期刊:
- 影响因子:4.000
- 作者:
Audrey Feeney;Christopher D Johnston;Alan Lucid;Jim O’Mahony;Aidan Coffey;Brigid Lucey;Roy D Sleator - 通讯作者:
Roy D Sleator
Bacteria-derived L-lactate fuels cervical cancer chemoradiotherapy resistance.
细菌来源的 L-乳酸会加剧宫颈癌放化疗的耐药性。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:18.4
- 作者:
Christopher D Johnston;S. Bullman - 通讯作者:
S. Bullman
Christopher D Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher D Johnston', 18)}}的其他基金
Advanced genetic systems for Fusobacterium nucleatum in oral and extra-oral pathologies
口腔和口腔外病理学中具核梭杆菌的先进遗传系统
- 批准号:
10790572 - 财政年份:2023
- 资助金额:
$ 156.51万 - 项目类别:
The SyngenicDNA and μPOET Platform: Overcoming Innate Barriers to Genetic Engineering in Bacteria.
SyngenicDNA 和 μPOET 平台:克服细菌基因工程的先天障碍。
- 批准号:
9768201 - 财政年份:2017
- 资助金额:
$ 156.51万 - 项目类别:
THE SYNGENICDNA AND UPOET PLATFORM: OVERCOMING INNATE BARRIERS TO GENETIC ENGINEE
SYNGENICDNA 和 UPOET 平台:克服遗传引擎的先天障碍
- 批准号:
10632208 - 财政年份:2017
- 资助金额:
$ 156.51万 - 项目类别:
相似海外基金
Characterizing fundamental principles of translational control in the bacterial model organism E. coli using a novel deep-sequencing technique
使用新型深度测序技术表征细菌模型生物大肠杆菌中翻译控制的基本原理
- 批准号:
316569611 - 财政年份:2016
- 资助金额:
$ 156.51万 - 项目类别:
Research Fellowships
Discovery and characterization of RNA modifications in a bacterial model pathogen
细菌模型病原体中 RNA 修饰的发现和表征
- 批准号:
277312162 - 财政年份:2015
- 资助金额:
$ 156.51万 - 项目类别:
Priority Programmes
Gene Amplification: Acinetobacter baylyi as a bacterial model system
基因扩增:贝氏不动杆菌作为细菌模型系统
- 批准号:
0920893 - 财政年份:2009
- 资助金额:
$ 156.51万 - 项目类别:
Continuing Grant
Probing Metabolic Complexity Using a Bacterial Model System
使用细菌模型系统探测代谢复杂性
- 批准号:
7221021 - 财政年份:2007
- 资助金额:
$ 156.51万 - 项目类别:
Probing Metabolic Complexity Using a Bacterial Model System
使用细菌模型系统探测代谢复杂性
- 批准号:
7347533 - 财政年份:2007
- 资助金额:
$ 156.51万 - 项目类别:














{{item.name}}会员




