Discovery and characterization of bacterial cell envelope assembly and remodeling networks that modulate tolerance to antibiotics
调节抗生素耐受性的细菌细胞包膜组装和重塑网络的发现和表征
基本信息
- 批准号:10711329
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibioticsBacteriaBacterial PhysiologyBiogenesisBiological ModelsCell EnlargementCell ShapeCell WallCell divisionCellsCellular MorphologyComplexCytolysisEnzymesEquilibriumGoalsGrowthHealthHumanInfectionLaboratoriesLinkMaintenanceMembraneMolecularMulti-Drug ResistanceN-Acetylmuramoyl-L-alanine AmidaseOsmosisPathogenesisPathway interactionsPeptide HydrolasesPeptidoglycanPhysiologicalPolymersPost-Translational Protein ProcessingProcessProteolysisRegulationResearchRoleSignal TransductionStreptococcus pneumoniaeStructureSystemTeichoic AcidsTherapeutic InterventionVirulenceantibiotic tolerancecell envelopecell growthinsightlipoteichoic acidmodel organismnew therapeutic targetnovelpathogenrespiratory pathogentherapeutic development
项目摘要
Abstract
The bacterial cell envelope is a complex and dynamic multilayered structure essential for cell growth and division.
The structural layer of the envelope, known as the cell wall or peptidoglycan (PG), determines cell shape and is
essential for survival because it protects bacteria from osmotic lysis. The action of PG synthases, which add new
material for the enlargement of the cell wall, and PG hydrolases, which create space for expansion of the PG
mesh-like structure, are both necessary for growth. Some of our most powerful and successful antibiotics target
PG synthases and derive their efficacy from not only inhibiting cell wall assembly, but also by causing cell lysis
through the active destruction of the cell wall by PG hydrolases. Because of their potential to cause cell lysis, it
has long been appreciated that bacteria must possess robust mechanisms to control when and where PG
hydrolases are activated. However, the molecular details underlying these regulatory processes are lacking.
Research in my laboratory focuses on uncovering and characterizing regulatory systems controlling PG
hydrolase activity during normal growth, and how antibiotics short-circuit this regulation to trigger cell lysis. Using
the human respiratory pathogen Streptococcus pneumoniae as a model organism, we found that PG hydrolases
are controlled by two cell envelope polymers known as teichoic acids (TAs): membrane-linked lipoteichoic acids
(LTAs) and cell wall-anchored teichoic acids (WTAs). Characterization of novel enzymes involved in TA
synthesis and remodeling revealed that cell-wall targeting antibiotics hyperactivate PG hydrolases by disrupting
the normal mechanisms that balance the levels of WTAs and LTAs in the cell envelope. Current studies in my
laboratory indicate that the levels of TAs are controlled by a complex regulatory network involving post-
translational modifications and targeted proteolysis. We also discovered that the modulation of the TA levels in
the cell envelope has significant impacts on cell morphology, growth, and tolerance to antibiotics. However, many
aspects of this regulation and synthesis and remodeling pathways remain unknown. Therefore, the goals of this
proposal are to (i) identify signals and pathways that modulate LTA biogenesis and characterize how antibiotics
subvert them; (ii) determine the physiological roles and regulation of a widely-conserved protease and
characterize how antibiotics hyperactivate its activity to disrupt LTA biogenesis; (iii) characterize the regulation
of a novel WTA remodeling enzyme, and uncover how S. pneumoniae uses WTA levels to control lysis and
promote growth. The results generated by this research will provide fundamental insights into broadly relevant
principles for envelope assembly and maintenance in S. pneumoniae and related bacteria. S. pneumoniae has
become an alarming multidrug-resistant health threat. Therefore, novel antibiotics that target S. pneumoniae are
critically needed. The studies proposed here will reveal general mechanisms by which bacteria remodel their
envelopes to survive antibiotic exposure and uncover new targets for therapeutic intervention.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josue Flores-Kim其他文献
Josue Flores-Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
Hitting bacteria with a Bam: Lectin-Like Antimicrobials as New Antibiotics
用 Bam 击中细菌:凝集素类抗菌剂作为新型抗生素
- 批准号:
DP230102150 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Discovery Projects
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Australian Laureate Fellowships
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
- 批准号:
468567 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Operating Grants
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10708102 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10587015 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10581945 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Developing novel antibiotics from natural products against resistant bacteria
从天然产物中开发针对耐药细菌的新型抗生素
- 批准号:
2599490 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10358855 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:














{{item.name}}会员




