Discovery and characterization of bacterial cell envelope assembly and remodeling networks that modulate tolerance to antibiotics
调节抗生素耐受性的细菌细胞包膜组装和重塑网络的发现和表征
基本信息
- 批准号:10711329
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibioticsBacteriaBacterial PhysiologyBiogenesisBiological ModelsCell EnlargementCell ShapeCell WallCell divisionCellsCellular MorphologyComplexCytolysisEnzymesEquilibriumGoalsGrowthHealthHumanInfectionLaboratoriesLinkMaintenanceMembraneMolecularMulti-Drug ResistanceN-Acetylmuramoyl-L-alanine AmidaseOsmosisPathogenesisPathway interactionsPeptide HydrolasesPeptidoglycanPhysiologicalPolymersPost-Translational Protein ProcessingProcessProteolysisRegulationResearchRoleSignal TransductionStreptococcus pneumoniaeStructureSystemTeichoic AcidsTherapeutic InterventionVirulenceantibiotic tolerancecell envelopecell growthinsightlipoteichoic acidmodel organismnew therapeutic targetnovelpathogenrespiratory pathogentherapeutic development
项目摘要
Abstract
The bacterial cell envelope is a complex and dynamic multilayered structure essential for cell growth and division.
The structural layer of the envelope, known as the cell wall or peptidoglycan (PG), determines cell shape and is
essential for survival because it protects bacteria from osmotic lysis. The action of PG synthases, which add new
material for the enlargement of the cell wall, and PG hydrolases, which create space for expansion of the PG
mesh-like structure, are both necessary for growth. Some of our most powerful and successful antibiotics target
PG synthases and derive their efficacy from not only inhibiting cell wall assembly, but also by causing cell lysis
through the active destruction of the cell wall by PG hydrolases. Because of their potential to cause cell lysis, it
has long been appreciated that bacteria must possess robust mechanisms to control when and where PG
hydrolases are activated. However, the molecular details underlying these regulatory processes are lacking.
Research in my laboratory focuses on uncovering and characterizing regulatory systems controlling PG
hydrolase activity during normal growth, and how antibiotics short-circuit this regulation to trigger cell lysis. Using
the human respiratory pathogen Streptococcus pneumoniae as a model organism, we found that PG hydrolases
are controlled by two cell envelope polymers known as teichoic acids (TAs): membrane-linked lipoteichoic acids
(LTAs) and cell wall-anchored teichoic acids (WTAs). Characterization of novel enzymes involved in TA
synthesis and remodeling revealed that cell-wall targeting antibiotics hyperactivate PG hydrolases by disrupting
the normal mechanisms that balance the levels of WTAs and LTAs in the cell envelope. Current studies in my
laboratory indicate that the levels of TAs are controlled by a complex regulatory network involving post-
translational modifications and targeted proteolysis. We also discovered that the modulation of the TA levels in
the cell envelope has significant impacts on cell morphology, growth, and tolerance to antibiotics. However, many
aspects of this regulation and synthesis and remodeling pathways remain unknown. Therefore, the goals of this
proposal are to (i) identify signals and pathways that modulate LTA biogenesis and characterize how antibiotics
subvert them; (ii) determine the physiological roles and regulation of a widely-conserved protease and
characterize how antibiotics hyperactivate its activity to disrupt LTA biogenesis; (iii) characterize the regulation
of a novel WTA remodeling enzyme, and uncover how S. pneumoniae uses WTA levels to control lysis and
promote growth. The results generated by this research will provide fundamental insights into broadly relevant
principles for envelope assembly and maintenance in S. pneumoniae and related bacteria. S. pneumoniae has
become an alarming multidrug-resistant health threat. Therefore, novel antibiotics that target S. pneumoniae are
critically needed. The studies proposed here will reveal general mechanisms by which bacteria remodel their
envelopes to survive antibiotic exposure and uncover new targets for therapeutic intervention.
摘要
细菌细胞被膜是一种复杂且动态的多层结构,对于细胞生长和分裂至关重要。
被膜的结构层,称为细胞壁或肽聚糖(PG),决定了细胞的形状,
对于生存至关重要,因为它可以保护细菌免受渗透溶解。PG酶的作用,增加了新的
用于扩大细胞壁的材料,以及PG水解酶,其为PG的扩展创造空间
网状结构,都是生长所必需的。一些最有效和最成功的抗生素靶向
PG降解酶,其功效不仅来自于抑制细胞壁组装,还来自于引起细胞裂解
通过PG水解酶对细胞壁的主动破坏。由于它们可能导致细胞溶解,
长期以来,人们一直认为细菌必须拥有强大的机制来控制何时何地PG
水解酶被激活。然而,这些调控过程背后的分子细节是缺乏的。
我实验室的研究重点是揭示和表征控制PG的调节系统
在正常生长过程中水解酶的活性,以及抗生素如何使这种调节短路从而引发细胞裂解。使用
以人类呼吸道病原体肺炎链球菌为模式生物,我们发现PG水解酶
由两种被称为磷壁酸(TA)的细胞包膜聚合物控制:膜连接脂磷壁酸
(LTA)和细胞壁锚定磷壁酸(WTA)。TA相关的新酶的表征
合成和重塑揭示了细胞壁靶向抗生素通过破坏PG水解酶,
平衡细胞包膜中WTA和LTA水平的正常机制。我目前的研究
实验室表明,TA的水平是由一个复杂的调控网络控制的,
翻译修饰和靶向蛋白水解。我们还发现,
细胞被膜对细胞形态、生长和对抗生素的耐受性具有显著影响。但不少
这种调节和合成以及重塑途径的各个方面仍然是未知的。因此,这一目标
建议是(i)确定调节LTA生物发生的信号和途径,并表征抗生素如何
(ii)确定广泛保守的蛋白酶的生理作用和调节,以及
表征抗生素如何过度激活其活性以破坏LTA生物合成;(iii)表征调节
一种新的WTA重塑酶,并揭示如何S。肺炎克雷伯氏菌使用WTA水平来控制裂解,
促进增长。这项研究产生的结果将提供广泛相关的基本见解
在S.肺炎和相关细菌。S.肺炎有
成为令人担忧的多重耐药健康威胁。因此,针对S.肺炎是
急需的。这里提出的研究将揭示细菌重塑其细胞的一般机制。
信封,以生存抗生素暴露和发现新的目标,治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Josue Flores-Kim其他文献
Josue Flores-Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
Hitting bacteria with a Bam: Lectin-Like Antimicrobials as New Antibiotics
用 Bam 击中细菌:凝集素类抗菌剂作为新型抗生素
- 批准号:
DP230102150 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Discovery Projects
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
- 批准号:
468567 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Operating Grants
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Australian Laureate Fellowships
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10708102 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10587015 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10581945 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Developing novel antibiotics from natural products against resistant bacteria
从天然产物中开发针对耐药细菌的新型抗生素
- 批准号:
2599490 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10358855 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:














{{item.name}}会员




