Development of Robust Brain Measurement Tools Informed by Ultrahigh Field 7T MRI
开发基于超高场 7T MRI 的强大大脑测量工具
基本信息
- 批准号:9372271
- 负责人:
- 金额:$ 48.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-17 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnatomyArchitectureAtrophicBrainBrain DiseasesClinicalClinical ResearchComplexComputing MethodologiesCoupledDataData SetDevelopmentDiseaseEarly DiagnosisFunctional Magnetic Resonance ImagingGoalsHippocampus (Brain)ImageImage EnhancementInterventionLabelLearningLocationMRI ScansMagnetic Resonance ImagingManualsMapsMeasurementMeasuresMethodsModelingMultimodal ImagingPatternPharmacologyRestSamplingScanningSchizophreniaStructureTestingTimeTissuesTrainingbasebrain abnormalitiesbrain tissuecerebral atrophycontrast imagingdisease diagnosisforestinnovationinterestmild cognitive impairmentmultimodalitymultitasknervous system disorderneuroimagingnovelresearch studyspatiotemporaltool
项目摘要
Development of Robust Brain Measurement Tools Informed by
Ultrahigh Field 7T MRI
Abstract:
Summary. Neuroimaging can provide safe, non-invasive, and whole-brain measurements for large clinical and
research studies of brain disorders. However, many disorders such as Alzheimer's Disease (AD) cause
complex spatiotemporal patterns of brain alterations, which are often difficult to tease out due to limited image
quality afforded by the popular 3T MRI scanners (with 20,000+ units available worldwide). Although 7T MRI
scanners provide better image quality, these ultrahigh field scanners are not widely available (with only 40+
units available worldwide) and are also not used clinically. Thus, tools for reconstructing 7T-like high-quality
MRI from 3T MRI scan are highly desirable. A means for achieving this is by learning the relationship between
3T and 7T MRI scans from training samples. This renewal project is dedicated to developing a set of novel
learning-based methods to transfer image contrast and tissue/anatomical labels of 7T MRI of training subjects
to 3T MRI of new subjects for 1) image quality enhancement, 2) high-precision tissue segmentation, 3) accurate
anatomical ROI (region of interest) labeling, and eventually 4) early detection of brain disorders such as AD.
Specifically, (Aim 1) to enhance the image quality of 3T MRI, we will develop a novel deep learning
architecture to learn a complex multi-layer 3T-to-7T mapping from training subjects, each with coupled 3T and
7T MRI scans. This mapping will then be applied to reconstruct quality-enhanced 7T-like MRI scans from new
3T MRI scans. (Aim 2) For brain structural measurement (e.g., brain atrophies, and hippocampal volume
shrinkage), a crucial step is brain tissue segmentation. We will thus develop a robust and accurate random
forest tissue segmentation method, which maps 7T label information to 3T scans. The mapping function is
trained using tissue labels generated for 7T scans, instead of 3T scans which often have limited image contrast.
(Aim 3) To further quantify local atrophies in ROIs or even sub-ROIs (i.e., hippocampal subfields), we will
develop a deformable multi-ROI segmentation method by employing (a) random forest to predict
deformation from each image location to the target boundary by adaptive integration of multimodal (anatomical,
structural & functional connectivity) information and (b) auto-context model to iteratively refine ROI
segmentation results. Note that the adaptive integration of multimodal MRI data, especially resting-state fMRI
(rs-fMRI), is critical to the segmentation of sub-ROIs such as hippocampal subfields, since local functional
connectivity patterns can help distinguish boundaries between neighboring subfields that often have different
cortico-cortical connections. (Aim 4) Finally, by integrating anatomical features from all accurately segmented
ROIs/sub-ROIs and also structural & functional connectivity features between those segmented ROIs/sub-ROIs,
we can more effectively detect early-stage brain disorders, i.e., the conversion of Mild Cognitive Impairment
(MCI) to AD. We will integrate information from different imaging datasets and multiple imaging centers by using
our novel multi-task learning approach for jointly learning the respective disease prediction models.
Applications. These computational methods will find their applications in diverse fields, i.e., quantifying brain
abnormalities associated with various neurological diseases (i.e., Alzheimer's disease and schizophrenia),
measuring the effects of different pharmacological interventions on the brain, and finding associations between
imaging and clinical scores.
鲁棒脑测量工具的发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinggang Shen其他文献
Dinggang Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinggang Shen', 18)}}的其他基金
Automatic Pelvic Organ Delineation in Prostate Cancer Treatment
前列腺癌治疗中的自动盆腔器官描绘
- 批准号:
9186673 - 财政年份:2016
- 资助金额:
$ 48.17万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8725738 - 财政年份:2013
- 资助金额:
$ 48.17万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8583365 - 财政年份:2013
- 资助金额:
$ 48.17万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8688869 - 财政年份:2012
- 资助金额:
$ 48.17万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
8964568 - 财政年份:2012
- 资助金额:
$ 48.17万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8373964 - 财政年份:2012
- 资助金额:
$ 48.17万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8518211 - 财政年份:2012
- 资助金额:
$ 48.17万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
9246415 - 财政年份:2012
- 资助金额:
$ 48.17万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
7780861 - 财政年份:2011
- 资助金额:
$ 48.17万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
8725660 - 财政年份:2011
- 资助金额:
$ 48.17万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 48.17万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 48.17万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 48.17万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 48.17万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 48.17万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 48.17万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 48.17万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 48.17万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 48.17万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 48.17万 - 项目类别: