Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
基本信息
- 批准号:8583365
- 负责人:
- 金额:$ 58.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-26 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:1 year old2 year oldAddressAdultAge-YearsAlgorithmsAtlasesBirthBirth IntervalsBrainBrain imagingBrain regionBrain scanCommunitiesComputer softwareComputing MethodologiesDataData AnalysesData SetDevelopmentDiffusion Magnetic Resonance ImagingDiffusion weighted imagingDue ProcessEnvironmentFutureGray unit of radiation doseGrowthHousingHumanImageInfantInformaticsKnowledgeLeadLifeMagnetic Resonance ImagingMapsMeasurementMeasuresMedical StaffMethodsNeonatalNeurodevelopmental DisorderNoisePatternPerformancePhasePopulationProcessPsychotic DisordersPublic HealthResearchResolutionResourcesScanningShapesShoulderSignal TransductionStructureSurfaceTechniquesTimeTissuesVariantWeightbasebrain sizecomputerized toolscritical periodfetalfollow-upimage registrationimaging Segmentationimaging modalityimprovedinsightmultimodalitymyelinationneonateneuroimagingnovelpopulation basedpublic health relevancereconstructionstemtoolwhite matter change
项目摘要
DESCRIPTION (provided by applicant): The human brain undergoes a dynamic phase of development with rapid structural and functional growth in the first year of life. Insight into thi critical period of development is of paramount importance for understanding the neurodevelopmental origins of psychiatric illness, since brain alterations that are associated with
psychosis and other major psychiatric illnesses often occur early during fetal or neonatal life. The recent availability of infant neuroimaging data is making increasingly feasible the precise characterization of development patterns in this period of time. However, computational tools that are dedicated to this purpose are still rare due to the following challenges: (1) Infant scans
suffer from significantly lower spatial resolution due to the smaller brain size; (2) Limited by scn time, the achievable signal-to-noise ratio for diffusion-weighted images is typically low; (3) The rapid myelination process results in significant variation of image contrast across different brain
regions, which can easily confuse existing computational methods; (4) Techniques developed for adult brain analysis are not directly transferable to infants. This project shoulders the challenging task of overcoming important technological hurdles in creating high- precision computational tools that will automate the quantification of brain development in the first year of
life. In Aim 1, we will create a 4D multimodality-guided, level-set-based framework for simultaneous segmentation and registration of serial brain scans acquired from birth to one year of age. This will allow low-contrast images (e.g., the isointense 3- and 6-month scans) to be segmented more effectively by borrowing multimodality information from early time-point (2-week) and/or later time-point (1-year) scans. In Aim 2, we will create a 4D cortical surface reconstruction method for consistent surface reconstruction across different time points. This will help alleviate the imprecision stemming from structural ambiguities in the surface reconstruction process due to low image contrast. In Aim 3, we will create a clustering-based hierarchically organized registration framework that will harness the manifold of anatomical variation of the image population for effective registration of infant brains. This will aid effectve registration of images with large structural differences to a common space for population-based early brain development studies. In Aim 4, we will create super-resolution atlases for infant brains at each time point by using a novel patch-based sparse representation technique. These atlases, when used as templates for brain registration, will lead to significant performance improvement due to their significantly improved structural clarity. All created tools and super-resolution atlases will be integrated into a dedicated infant-brain-analysis software package and made freely available to the research community.
描述(申请人提供):人的大脑在生命的第一年经历了一个动态的发展阶段,结构和功能的快速增长。深入了解这一发育的关键时期对于理解精神疾病的神经发育起源至关重要,因为大脑的改变与精神疾病有关
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinggang Shen其他文献
Dinggang Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinggang Shen', 18)}}的其他基金
Automatic Pelvic Organ Delineation in Prostate Cancer Treatment
前列腺癌治疗中的自动盆腔器官描绘
- 批准号:
9186673 - 财政年份:2016
- 资助金额:
$ 58.38万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8725738 - 财政年份:2013
- 资助金额:
$ 58.38万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8688869 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
8964568 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8373964 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8518211 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
9246415 - 财政年份:2012
- 资助金额:
$ 58.38万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
7780861 - 财政年份:2011
- 资助金额:
$ 58.38万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
8725660 - 财政年份:2011
- 资助金额:
$ 58.38万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
8532675 - 财政年份:2011
- 资助金额:
$ 58.38万 - 项目类别:
相似海外基金
Study on how ECEC educators and 0-to-2-year-old children construct mealtime practice, value, and culture
ECEC 教育工作者和 0 至 2 岁儿童如何构建用餐时间实践、价值观和文化的研究
- 批准号:
20K13949 - 财政年份:2020
- 资助金额:
$ 58.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantitative Lung Function Assessment in 2-year old children after Congenital Diaphragmatic Hernia using Fourier Decomposition Magnetic Resonance Imaging
傅里叶分解磁共振成像对2岁儿童先天性膈疝术后肺功能的定量评估
- 批准号:
397806429 - 财政年份:2018
- 资助金额:
$ 58.38万 - 项目类别:
Research Grants
Study on environmental evaluation of childcare related to physical activity in 1-2 year-old
1~2岁幼儿体育活动相关环境评价研究
- 批准号:
16K17404 - 财政年份:2016
- 资助金额:
$ 58.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Public Health Nutrition Policy: Potential to influence parental food and drink choices for 0-2 year old children equitably
公共卫生营养政策:有可能公平地影响父母对 0-2 岁儿童的食物和饮料选择
- 批准号:
nhmrc : 1055650 - 财政年份:2013
- 资助金额:
$ 58.38万 - 项目类别:
Postgraduate Scholarships














{{item.name}}会员




