Molecular Determinants of Mitochondrial Instability and Arrhythmias
线粒体不稳定和心律失常的分子决定因素
基本信息
- 批准号:9326466
- 负责人:
- 金额:$ 51.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcidsAction PotentialsAcuteAdultArrhythmiaBehaviorBenzodiazepine ReceptorBlood flowCardiac MyocytesCellsCessation of lifeCicatrixComplexCoronaryCyclosporineDataElectrophysiology (science)Functional disorderGap JunctionsGenetic ModelsGoalsHeartHeart AbnormalitiesHeart ArrestHeterogeneityHumanImageImaging TechniquesImpairmentIn VitroIncidenceInfarctionInjuryInner mitochondrial membraneIschemiaKnock-outLigandsMediatingMembrane PotentialsMetabolicMethodsMitochondriaModelingMolecularMusMuscle CellsMyocardial InfarctionMyocardiumNeonatalOpticsOrganellesOxidative StressPharmacologyPhasePropertyProteinsReactive Oxygen SpeciesRecoveryRefractoryReperfusion InjuryReperfusion TherapyRestRiskRoleSecondary toTissuesVentricularVentricular FibrillationVentricular TachycardiaWorkbaseblood pumpcatalasecyclophilin Dexperienceextracellularheart rhythmhemodynamicsinduced pluripotent stem cellinnovationinsightknockout animalloss of functionmitochondrial permeability transition poremonolayermortalitynoveloverexpressionpreventrestorationspatiotemporalsudden cardiac deaththerapeutic target
项目摘要
Sudden Cardiac Death (SCD) occurs in more than half a million people every year and arrhythmias, resulting in
hemodynamic insufficiency followed by death, account for the majority of SCD cases. Arrhythmias secondary to
scar formation are well understood, but mechanisms by which acute ischemia/reperfusion (I/R) injury promotes
ventricular tachycardia and fibrillation (VT/VF) are more complex. I/R-related arrhythmias depend on dynamic
properties of the tissue, including Ca2+-mediated triggers, functional conduction block, decreased gap junctional
conductance, heterogeneous shortening of the action potential (AP) and dispersion of refractoriness. These
complex electrophysiological (EP) changes are caused by limitations in ATP supply, changes in reactive oxygen
species (ROS), accumulation of detrimental intracellular (Ca2+, Na+, acid) and extracellular (K+, lactate)
constituents, all of which can be traced to a common origin, namely impaired mitochondrial function. Our group
was the first to recognize the importance of heterogeneous mitochondrial instability, including sustained
depolarization or oscillation of the mitochondrial inner membrane potential (∆Ψm), across clusters of
myocytes or regions within the heart, in setting the stage for VT/VF. However, the mechanisms behind
mitochondrial instability during reperfusion are unclear and how they contribute to arrhythmias is not well
understood. While inhibition of the mitochondrial permeability transition pore (mPTP) decreases infarct size,
cyclosporine A-mediated inhibition of mPTP has little or no effect on arrhythmia incidence after ischemia,
suggesting that the early dysfunction and late injury mechanisms may be distinct. In contrast, we found that
mitochondrial benzodiazepine receptor (mBzR) ligands are very effective at restoring the action potential and
suppressing arrhythmias induced by I/R, in parallel with their ability to prevent or reverse mitochondrial
depolarization. Indeed, our exciting preliminary data suggests that mBzR, rather than mPTP, is more important
in terms of ∆Ψm and electrical stability during the early reperfusion phase. Here, we will use innovative
approaches to image the dynamics of ∆Ψm, Vm, matrix Ca and ROS during I/R at the cellular and whole
2+
heart scales, combined with powerful genetic models to selectively knockout the key proteins involved
in modulating mPTP (cyclophilin D; PPIF), mitochondrial Ca2+ (the mitochondrial Ca2+uniporter; MCU),
and the mBzR (translocator protein; TSPO), to define the causal mechanisms underlying mitochondrial
instability and arrhythmias on reperfusion. This project will move the field from conclusions based on
pharmacological inference to molecular understanding, allowing us to focus our efforts on the correct
mitochondrial targets to pursue to prevent I/R-induced arrhythmias with the goal of decreasing the burden of
SCD.
猝死(SCD)每年发生超过50万人和心律不齐,导致
血液动力学功能不全随后死亡,占大多数SCD病例。继发性心律失常
疤痕形成是充分了解的,但是急性缺血/再灌注(I/R)损伤促进的机制
心室心动过速和纤颤(VT/VF)更为复杂。 I/R相关心律不齐取决于动态
组织的特性,包括Ca2+介导的触发器,功能传导块,减少了间隙连接
电导率,动作电位(AP)的异质缩短和磨性分散。这些
复杂的电生理(EP)变化是由ATP供应限制,活性氧的变化引起的
物种(ROS),有害细胞内(Ca2+,Na+,酸)和细胞外(K+,乳酸)的积累
构成,所有这些都可以追溯到共同的起源,即线粒体功能受损。我们的小组
是第一个认识到异质线粒体不稳定性的重要性的人,包括持续
线粒体内膜电势(∆ψm)的去极或振荡,跨簇
为VT/VF设置阶段,心脏或心脏内部的心肌细胞或区域。但是,背后的机制
再灌注过程中的线粒体不稳定尚不清楚,它们如何对心律不齐不好
理解。抑制线粒体通透性过渡孔(MPTP)降低了梗塞大小,但
环孢菌素A介导的MPTP抑制对缺血后心律不齐的入射几乎没有影响,
表明早期功能障碍和晚期损伤机制可能是不同的。相反,我们发现
线粒体苯二氮卓受体(MBZR)配体在恢复动作电位和
抑制由I/R诱导的心律不齐,与预防或反向线粒体的能力并行
去极化。确实,我们令人兴奋的初步数据表明,MBZR而不是MPTP更重要
在早期再灌注阶段的∆ψm和电稳定性方面。在这里,我们将使用创新
在蜂窝和整体上I/R期间I/R期间I/R的动力学成像的方法
2+
心脏秤,结合强大的遗传模型,有选择地敲除涉及的关键蛋白
在调节MPTP(环蛋白D; PPIF)时,线粒体Ca2+(线粒体Ca2+ Uniporter; MCU),
和MBZR(转运蛋白; TSPO),以定义线粒体的因果机制
再灌注的不稳定性和心律不齐。该项目将从基于结论的结论中移动
对分子理解的药理推断,使我们能够将精力集中在正确的
线粒体靶标可追求以防止I/R引起的心律不齐,目的是减少燃烧
scd。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FADI GABRIEL AKAR其他文献
FADI GABRIEL AKAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FADI GABRIEL AKAR', 18)}}的其他基金
Desmoplakinopathies: Integrated Pathophysiology and Therapeutics
桥粒斑蛋白病:综合病理生理学和治疗学
- 批准号:
10659458 - 财政年份:2023
- 资助金额:
$ 51.15万 - 项目类别:
Optimizing AF ablation by a novel optogenetics and computational approach
通过新颖的光遗传学和计算方法优化 AF 消融
- 批准号:
10676183 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别:
Optimizing AF ablation by a novel optogenetics and computational approach
通过新颖的光遗传学和计算方法优化 AF 消融
- 批准号:
10508937 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别:
Metabolic signaling in atrial fibrillation and remodeling
心房颤动和重构中的代谢信号
- 批准号:
10393659 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Metabolic signaling in atrial fibrillation and remodeling
心房颤动和重构中的代谢信号
- 批准号:
10593102 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Mitochondrial fission in diabetes-related arrhythmia
糖尿病相关心律失常中的线粒体分裂
- 批准号:
10176182 - 财政年份:2020
- 资助金额:
$ 51.15万 - 项目类别:
Mitochondrial fission in diabetes-related arrhythmia
糖尿病相关心律失常中的线粒体分裂
- 批准号:
10418766 - 财政年份:2020
- 资助金额:
$ 51.15万 - 项目类别:
Role of CCN5 in heart failure related arrhythmias
CCN5 在心力衰竭相关心律失常中的作用
- 批准号:
9315062 - 财政年份:2016
- 资助金额:
$ 51.15万 - 项目类别:
Targeting Abnormal Calcium Cycling Using Novel Gene Therapy Vectors
使用新型基因治疗载体靶向异常钙循环
- 批准号:
8653366 - 财政年份:2014
- 资助金额:
$ 51.15万 - 项目类别:
Targeting Abnormal Calcium Cycling Using Novel Gene Therapy Vectors
使用新型基因治疗载体靶向异常钙循环
- 批准号:
8788952 - 财政年份:2014
- 资助金额:
$ 51.15万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
CaV2.2 splice variants in the hippocampus: function and pharmacology
海马 CaV2.2 剪接变异体:功能和药理学
- 批准号:
10363116 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别:
Dynamics of Cellular Brain Metabolism Using Mass Spectrometry Imaging
使用质谱成像研究细胞脑代谢动力学
- 批准号:
10556434 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别:
Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
- 批准号:
10525010 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别:
Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
- 批准号:
10682486 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别:
Dynamics of cellular brain metabolism using mass spectrometry imaging
使用质谱成像研究细胞脑代谢动力学
- 批准号:
10418219 - 财政年份:2022
- 资助金额:
$ 51.15万 - 项目类别: