Novel Use of Emergent Technologies to Improve Efficiency of Animal Model Research

新兴技术的新用途提高动物模型研究的效率

基本信息

  • 批准号:
    9354497
  • 负责人:
  • 金额:
    $ 73.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-12-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This Phase II project aims to continue development of a commercial quality, innovative cloud hosted information management system, called Climb 2.0(tm) that will increase laboratory efficiency and provide improved capabilities for research laboratories. Climb is designed to offer integrated laboratory process management modules that include mobile communications tools data monitoring and alert systems, and integrated access to Microsoft Azure Cloud(tm) Machine Learning and Stream Analytics services. Initially, Climb 2.0 will target animal model research laboratories; however, the core of the platform is designed to be adaptable to nearly any research type or related industry. Current research information management systems are primarily designed as record-keeping tools with little or no direct focus on laboratory efficiency or in enhancing value of the research data. They also do not leverage emergent mobile device technologies, social media frameworks, and data analysis and storage capabilities of cloud computing. Many laboratories still use paper as their primary recording system. Paper data logging is then followed by secondary data entry into a laboratory database. These systems are error prone, time consuming and lead to laboratory databases with significant time lags between data acquisition and data entry. Moreover, they do not recognized cumulative data relationships, which may identify important trends, and researchers often miss windows of opportunity to take action on time-sensitive events. In Phase I, RockStep Solutions demonstrated feasibility of an innovative Cloud Information Management Bundle system, Climb, which will increase efficiency and improve capabilities in animal model data management. During Phase I, a beta version of Climb was successfully developed and tested against strict performance metrics as a proof of concept. We successfully built a prototype with working interfaces that integrates real-time communication technologies with media capabilities of mobile devices. Phase II proposes four specific Aims: 1) Develop the technology infrastructure to support the secure and scalable Software as a Service (SaaS) deployment of Climb for enterprise commercial release; 2) Develop and extend the Phase-I prototype Data Monitoring and Messaging System (DMMS) into a platform ready for production use; 3) Extend Climb's DMMS adding a Stream Analytics engine to support Internet of Things (IoT) devices and streaming media; 4) Deploy a beta release of Climb at partner research labs, test and refine the product for final commercialization. To ensure Climb is developed with functionality and tools relevant to research organizations, RockStep Solutions has established collaborations with key beta sites to test all of the major functionality developed in this proposal. IMPACT: By leveraging emergent technologies and cloud computing, Climb offers several advantages: 1) enables real-time communications using familiar tools among members of research groups; 2) reduces the risk of experimental setbacks, and 3) enables complex experiments to be conducted efficiently.
 该项目的第二阶段旨在继续开发一个商业质量,创新的云托管信息管理系统,称为Climb 2.0(tm),这将提高实验室效率,并为研究实验室提供更好的能力。Climb旨在提供集成的实验室流程管理模块,包括移动的通信工具、数据监控和警报系统,以及对Microsoft Azure Cloud(tm)机器学习和流分析服务的集成访问。最初,Climb 2.0将针对动物模型研究实验室;然而,该平台的核心旨在适应几乎任何研究类型或相关行业。目前的研究信息管理系统主要是作为记录保存工具而设计的,很少或没有直接关注实验室效率或提高研究数据的价值。他们也没有利用新兴的移动终端技术、社交媒体框架以及云计算的数据分析和存储功能。许多实验室仍然使用纸张作为主要的记录系统。纸质数据记录之后,将二级数据输入实验室数据库。这些系统容易出错,耗时,并导致实验室数据库在数据采集和数据输入之间存在明显的时间滞后。此外,它们没有认识到累积数据的关系,而累积数据的关系可能会发现重要的趋势,研究人员往往错过对时间敏感的事件采取行动的机会之窗。在第一阶段,RockStep Solutions展示了创新的云信息管理捆绑系统Climb的可行性,该系统将提高动物模型数据管理的效率和能力。在第一阶段,Climb的测试版成功开发,并根据严格的性能指标进行了测试,作为概念验证。我们成功地建立了一个原型的工作界面,集成了实时通信技术与媒体功能的移动的设备。第二阶段提出了四个具体目标:1)开发技术基础设施,以支持Climb的安全和可扩展的软件即服务(SaaS)部署,用于企业商业发布; 2)开发和扩展第一阶段原型数据监控和消息传递系统(DMMS),使其成为一个可用于生产的平台; 3)扩展Climb的DMMS,添加流分析引擎以支持物联网(IoT)设备和流媒体; 4)在合作伙伴研究实验室部署Climb的测试版,测试和完善产品以最终商业化。为了确保Climb的开发具有与研究组织相关的功能和工具,RockStep Solutions与关键的测试站点建立了合作关系,以测试本提案中开发的所有主要功能。影响:通过利用新兴技术和云计算,Climb提供了几个优势:1)使用研究小组成员之间熟悉的工具进行实时通信; 2)降低实验挫折的风险; 3)使复杂的实验能够有效地进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles J Donnelly其他文献

Charles J Donnelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles J Donnelly', 18)}}的其他基金

Core--Computational
核心--计算
  • 批准号:
    7299554
  • 财政年份:
    2006
  • 资助金额:
    $ 73.94万
  • 项目类别:
Core--Computational
核心--计算
  • 批准号:
    8042664
  • 财政年份:
  • 资助金额:
    $ 73.94万
  • 项目类别:
Core--Computational
核心--计算
  • 批准号:
    7597180
  • 财政年份:
  • 资助金额:
    $ 73.94万
  • 项目类别:
Core--Computational
核心--计算
  • 批准号:
    7557341
  • 财政年份:
  • 资助金额:
    $ 73.94万
  • 项目类别:
Core--Computational
核心--计算
  • 批准号:
    7798099
  • 财政年份:
  • 资助金额:
    $ 73.94万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了