Imaging Flow Cytometry Enabled by a Spatial-Frequency Filter

通过空间频率滤波器实现成像流式细胞术

基本信息

  • 批准号:
    9139362
  • 负责人:
  • 金额:
    $ 21.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-15 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Fluorescence-activated-cell-sorting (FACS) or flow cytometry enables clinicians and researchers to quantitatively characterize the physical (cell size, shape, and granularity) and biochemical (DNA content, cell cycle distribution, cell surface markers, and viability) properties of cells, however FACS devices do not produce an image of the cell. Increasing sophistication of research assays now rely on the collection of cells based on their phenotypical and spatial characteristics; with the capabilities offered only by microscopic imaging cytometers having severe limits in throughput and lacking cell isolation. We propose an innovative, low cost design to combine the merits of FACS and microscopic imaging cytometry without the limits of each, offering the biomedical research and clinical community a unique tool to address the needs for current and emerging applications. The key innovation is based on a significant extension of the spatial-coding algorithms our team demonstrated in the past years. In the proposed design, we create a special filter with a matrix of periodic slits in front of each PMT detector. The resulting PMT signal is composed of the multiplexed cell signals modulated by the filter, which can subsequently be deconvolved to produce fluorescence and scatter generated from different areas of the cell: the image. In this Phase I program, we will integrate imaging technology into our existing WOLF Cell Sorter to produce the very first imaging cytometer with cell sorting capabilities. Since we use conventional, non-pixelated detectors (e.g. PMTs) found in conventional flow cytometers, this technology is compatible with existing flow cytometer architectures allowing for wide use. Equipped with cell imaging capabilities, researchers can track many important biological processes by analyzing not only the intensity but the localization of certain proteins within cytosolic, nuclear, or cell membrane domains and subdomains. With the rapidly developing capabilities of handling "big data", images of millions of single cells in a flow cytometer provide vast resources for research and disease analysis, and rapid growth has been predicted in the market of such high-content imaging cytometer cell sorters for emerging applications such as precision medicine. We believe the proposed design is a major breakthrough that can potentially revolutionize the field of flow cytometry, and its impact and ramifications on both fundamental biomedical research and clinical applications can be tremendous.
 描述(由申请人提供):流式细胞仪(FACS)或流式细胞术使临床医生和研究人员能够定量表征细胞的物理(细胞大小、形状和粒度)和生物化学(DNA含量、细胞周期分布、细胞表面标志物和活力)特性,但FACS设备不产生细胞图像。越来越复杂的研究测定现在依赖于基于细胞的表型和空间特征的细胞收集;仅由显微成像细胞仪提供的能力在通量方面具有严重限制并且缺乏细胞分离。我们提出了一种创新的,低成本的设计,结合联合收割机的优点,流式细胞仪和显微成像细胞术没有各自的限制,提供生物医学研究和临床社区的一个独特的工具,以满足当前和新兴的应用程序的需求。关键的创新是基于我们团队在过去几年中展示的空间编码算法的重大扩展。在所提出的设计中,我们创建一个特殊的过滤器与矩阵的周期性狭缝在每个PMT检测器的前面。所得到的PMT信号由滤波器调制的多路复用细胞信号组成,其随后可以被去卷积以产生从细胞的不同区域产生的荧光和散射:图像。在这个第一阶段计划中,我们将把成像技术整合到我们现有的WOLF细胞分选仪中,以生产第一台具有细胞分选功能的成像细胞仪。由于我们使用在常规流式细胞仪中发现的常规非像素化检测器(例如PMT),因此该技术与允许广泛使用的现有流式细胞仪架构兼容。配备了细胞成像能力,研究人员可以通过分析胞质,核或细胞膜结构域和子域内某些蛋白质的强度和定位来跟踪许多重要的生物过程。随着处理“大数据”的能力的快速发展,流式细胞仪中数百万个单细胞的图像为研究和疾病分析提供了巨大的资源,并且已经预测了用于新兴应用(例如精准医学)的这种高内容成像细胞仪细胞分选器的市场的快速增长。我们认为,拟议的设计是一个重大突破,可能会彻底改变流式细胞术领域,其对基础生物医学研究和临床应用的影响和后果可能是巨大的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sung Hwan Cho其他文献

Sung Hwan Cho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sung Hwan Cho', 18)}}的其他基金

AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
  • 批准号:
    10672364
  • 财政年份:
    2022
  • 资助金额:
    $ 21.4万
  • 项目类别:
AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
  • 批准号:
    10546865
  • 财政年份:
    2022
  • 资助金额:
    $ 21.4万
  • 项目类别:
3D-FACS: 3D image-based fluorescence activated cell sorting
3D-FACS:基于 3D 图像的荧光激活细胞分选
  • 批准号:
    9910011
  • 财政年份:
    2018
  • 资助金额:
    $ 21.4万
  • 项目类别:
Microfluidic neutrophil counter for at-home use by chemotherapy patients
供化疗患者在家使用的微流控中性粒细胞计数器
  • 批准号:
    8523488
  • 财政年份:
    2013
  • 资助金额:
    $ 21.4万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 21.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 21.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了