3D-FACS: 3D image-based fluorescence activated cell sorting
3D-FACS:基于 3D 图像的荧光激活细胞分选
基本信息
- 批准号:9910011
- 负责人:
- 金额:$ 74.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptedAreaBiologicalBiological AssayBiologyBiotechnologyBrainCell SeparationCellsCharacteristicsCommunitiesComputer SystemsComputer softwareDNA DamageDataData SetDetectionDevelopmentDevicesDiseaseElectronicsFluorescence-Activated Cell SortingGene ExpressionGenomicsGoalsImageIndividualIonizing radiationIonsLightLightingLinkMedicalMicrofluidic MicrochipsMicrofluidicsMicroscopyMissionNuclearOpticsOrganellesOutputPerformancePhasePhenotypeProcessPropertyProtein translocationReal-Time SystemsResearchResearch DesignResearch PersonnelResolutionSamplingScanningSchemeSignal TransductionSorting - Cell MovementSpeedSpottingsStructureSupport SystemSupporting CellSystemTechnologyThree-Dimensional ImageThree-Dimensional ImagingTimeTravelTubeValidationanalogbasecell transformationcell typecellular imagingcomputerized data processingdata acquisitiondesigndrug developmentexperimental studyfluorescence activated cell sorter deviceimage guidedimage processingimage reconstructionimaging systemimprovedinnovationinstrumentinterestinventionmeetingsmicroscopic imagingnext generation sequencingnoveloptical imagingphotomultiplierprogramsprotein transportprototypereal-time imagesremote controltomographytooltranscription factortranscriptomicstumor
项目摘要
SUMMARY
The primary goal of the proposed research is to demonstrate a high throughput flow cytometer system that can
sort cells based on high-content 3D cell image features. For each single cell flowing in a microfluidic channel,
the system will produce cell tomography from spatially resolved fluorescent and scattering signals at a rate of
1000 cells/s. Each multi-parameter 3D cell image will be reconstructed, hundreds of image features will be
extracted, and cells with their spatial features meeting the user-defined criteria will be sorted (3D image-guided
cell sorting). Essentially the proposed system combines the merits of high throughput cell analysis and sorting
capabilities of a fluorescence-activated cell sorter (FACS) with a high-content 3D imaging microscope to offer
researchers and clinicians unprecedented features and capabilities to analyze, classify, and isolate cells
at single cell resolution. The invention of this tool is anticipated to transform cell phenotype studies, greatly
accelerate cell type discoveries, and enhance studies of highly heterogeneous biological samples such as
tumors and brain.
To realize such ambitious goal, we will take several innovative approaches. To produce high-quality 3D cell
images for individual cells travelling fast in a flow channel, we invent a camera-less imaging system using a
design that combines scanning structured light excitation and the scheme of confocal detection, which
transforms 3D spatial information into temporal signals at the output of high-speed photomultiplier tubes (PMTs).
For cell sorting mechanism, we adopt a microfluidic chip/cartridge design with an on-chip piezoelectric
actuator to sort cells without causing flow jitters that can disrupt imaging of cells passing the optical imaging
area. To achieve real-time image processing and image feature extraction, as well as handling the transport and
storage of the large amount of 3D cell image data, we propose an electronic system consisting of a field
programmable gate array (FPGA) module and graphics processing unit (GPU), having the FPGA process PMT
signals, cell detection, segmentation and image reconstruction, and sorting decision control while
having the GPU extract hundreds of 3D image related features and define sorting criteria (i.e. 3D image-
guided gating) in parallel. To evaluate the performance of the system, we will perform experiments to sort cells
based on the properties of protein translocation and trafficking, spot counting, organelle tracking, and features
that help understand the disease biology and drug development.
The proposed instrument will offer biomedical community a powerful tool to advance phenotype studies and
cell type discoveries, and to link gene expression studies to cell phenotypic characteristics at single cell
resolution and high throughput. The impact of the research will be significant and profound.
概括
拟议的研究的主要目标是证明一个高通量流式细胞仪系统,可以
根据高含量3D细胞图像特征对单元进行分类。对于在微流体通道中流动的每个单元,
该系统将以空间分辨的荧光和散射信号的速度产生细胞层析成像
1000个单元/s。每个多参数3D单元格图像将被重建,数百个图像功能将是
提取,将符合用户定义标准的空间特征的单元格进行分类(3D图像引导
细胞分类)。本质上,提出的系统结合了高吞吐量细胞分析和分类的优点
具有高含量3D成像显微镜的荧光激活细胞分选仪(FACS)的功能
研究人员和临床医生空前的分析,分类和分离细胞的功能
在单细胞分辨率下。预计该工具的发明将改变细胞表型研究,极大地
加速细胞类型的发现,并增强对高度异质生物样品的研究,例如
肿瘤和大脑。
为了实现这种雄心勃勃的目标,我们将采取几种创新的方法。产生高质量的3D单元
我们在流通通道中快速行驶的单个单元的图像,我们使用A发明无摄像机成像系统
结合扫描结构化光激发和共聚焦检测方案的设计,
将3D空间信息转换为高速光电管(PMTS)输出的时间信号。
对于细胞分类机制,我们采用带有片上压电的微流体芯片/墨盒设计
执行器以对单元进行排序而不会引起流动抖动,从而破坏了通过光学成像的细胞成像
区域。实现实时图像处理和图像特征提取,并处理运输和
存储大量的3D单元图像数据,我们提出了一个由字段组成的电子系统
可编程门阵列(FPGA)模块和图形处理单元(GPU),具有FPGA进程
信号,单元检测,分割和图像重建以及对决策控制的分类
具有GPU提取数百个3D图像相关特征并定义排序标准(即3D图像 -
引导门)并联。为了评估系统的性能,我们将执行实验对单元进行分类
基于蛋白质易位和运输的特性,点计数,细胞器跟踪和特征
这有助于了解疾病生物学和药物开发。
拟议的仪器将为生物医学社区提供一个强大的工具,以推进表型研究和
细胞类型的发现,并将基因表达研究与单细胞的细胞表型特征联系起来
分辨率和高通量。研究的影响将是巨大而深刻的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung Hwan Cho其他文献
Sung Hwan Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sung Hwan Cho', 18)}}的其他基金
AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
- 批准号:
10672364 - 财政年份:2022
- 资助金额:
$ 74.57万 - 项目类别:
AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
- 批准号:
10546865 - 财政年份:2022
- 资助金额:
$ 74.57万 - 项目类别:
Imaging Flow Cytometry Enabled by a Spatial-Frequency Filter
通过空间频率滤波器实现成像流式细胞术
- 批准号:
9139362 - 财政年份:2016
- 资助金额:
$ 74.57万 - 项目类别:
Microfluidic neutrophil counter for at-home use by chemotherapy patients
供化疗患者在家使用的微流控中性粒细胞计数器
- 批准号:
8523488 - 财政年份:2013
- 资助金额:
$ 74.57万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 74.57万 - 项目类别:
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
- 批准号:
10713710 - 财政年份:2023
- 资助金额:
$ 74.57万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 74.57万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 74.57万 - 项目类别: