CXCR4 signaling in lung epithelial repair
CXCR4信号在肺上皮修复中的作用
基本信息
- 批准号:9026496
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-18 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Lung InjuryAdmission activityAdult Respiratory Distress SyndromeAlveolarAutopsyBerlinBiochemicalBiological MarkersBlood capillariesBronchoalveolar Lavage FluidCXCL12 geneCXCR4 ReceptorsCXCR4 geneCellsClinicalClinical ResearchCommunitiesComplexCultured CellsDataDiseaseDissociationEpithelialEpithelial CellsExposure toFocal Adhesion Kinase 1GasesHealthHyperoxiaHypoxemiaInflammationInjuryIntensive Care UnitsInvestigationKnockout MiceKnowledgeLifeLipopolysaccharidesLungLung ComplianceMAP3K5 geneMAPK8 geneMeasurementMeasuresMechanical ventilationMechanicsMembraneModelingMusOutcomeOxygenPP5 protein-serine-threonine phosphatasePathogenesisPatientsPhosphotransferasesPhysiologicalPlasmaPneumoniaProcessPulmonary EdemaRattusReactive Oxygen SpeciesRecoveryResolutionRespiratory FailureRoleSamplingSerineSeverity of illnessSignal PathwaySignal TransductionSignaling MoleculeStretchingSupportive careTXN geneTestingTherapeuticTherapeutic InterventionThreonineTidal VolumeTyrosineVentilatorVentilator-induced lung injuryWound Healingautocrinebasecapillarychemokineeconomic impactin vitro Modelin vivoinjuredinjury and repairlung injurylung repairmigrationmortalitymouse modelpressurerepairedrestorationtargeted treatmenttissue-factor-pathway inhibitor 2wound
项目摘要
DESCRIPTION (provided by applicant): Community-acquired pneumonia (CAP) is the most common cause of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury that is one of the most frequent causes of admission into the intensive care unit. Few therapeutic options are available, and mortality is high. Supportive therapy with supplemental oxygen and mechanical ventilation are essential, but additional injury can be caused by the ventilator, termed ventilator-induced lung injury (VILI). Epithelial repair is critical for disease
resolution and survival, but we have limited knowledge of the underlying mechanisms of repair and how mechanical stretch impacts these mechanisms. The long term objective of this project is to increase our understanding of the mechanisms of epithelial repair and how overdistention of pulmonary epithelial cells contributes to VILI and maladaptive repair mechanisms. We previously identified an autocrine role for the chemokine CXCL12 in alveolar epithelial repair involving its receptor CXCR4. We now have preliminary data showing that patients with CAP-induced ARDS that had high levels of CXCL12 in their bronchoalveolar lavage fluid had shorter duration of mechanical ventilation and lower mortality. Based upon additional preliminary data, we propose that CXCR4 interacts with a complex of signaling molecules including focal adhesion kinase (FAK) and apoptosis signal-regulating kinase-1 (ASK1) that regulates epithelial repair. The central hypothesis of this application is that CXCL12 promotes epithelial repair, but mechanical stretch causes disruption of CXCR4-FAK-ASK1 signaling that inhibits cell spreading, migration, and repair. We will first examine whether CXCL12 is a biomarker for ARDS patients undergoing adaptive repair by measuring CXCL12 in banked samples of bronchoalveolar lavage fluid and plasma. In addition we will use autopsy samples from ARDS patients to evaluate expression of CXCR4 and phosphorylated (activated) ASK1. In the second aim we will investigate the interactions between CXCR4, FAK, and ASK1 during recovery from lung injury caused by LPS as a model of pneumonia. We will use mice with conditional deletion of CXCR4 in lung epithelial as well as ASK1 knockout mice. We will also examine the biochemical interactions of these signaling molecules in cultured alveolar epithelial cells in a scratch wound model. In the third aim we will investigate how high stretch mechanical ventilation or cyclic stretch of cultured cells disrupts these signaling pathways during repair in combined model of pneumonia (LPS) and mechanical ventilation. These studies will elucidate new signaling pathways involved in alveolar epithelial repair and how mechanical stretch disrupts the repair processes.
描述(由申请人提供):社区获得性肺炎(CAP)是急性呼吸窘迫综合征(ARDS)的最常见原因,ARDS是一种严重的急性肺损伤,是进入重症监护室的最常见原因之一。几乎没有治疗选择,死亡率很高。辅助供氧和机械通气的支持治疗是必不可少的,但呼吸机可能会引起额外的损伤,称为呼吸机诱导的肺损伤(VILI)。上皮修复对疾病至关重要
解决和生存,但我们对修复的潜在机制以及机械拉伸如何影响这些机制的知识有限。该项目的长期目标是增加我们对上皮修复机制的理解,以及肺上皮细胞过度扩张如何导致VILI和适应不良的修复机制。我们以前确定了自分泌作用的趋化因子CXCL 12在肺泡上皮修复涉及其受体CXCR 4。我们现在有初步的数据显示,在支气管肺泡灌洗液中有高水平CXCL 12的CAP诱导的ARDS患者的机械通气持续时间较短,死亡率较低。基于额外的初步数据,我们提出CXCR 4与包括粘着斑激酶(FAK)和凋亡信号调节激酶-1(ASK 1)在内的信号分子复合物相互作用,调节上皮修复。本申请的中心假设是CXCL 12促进上皮修复,但机械拉伸导致抑制细胞扩散、迁移和修复的CXCR 4-FAK-ASK 1信号传导中断。我们将首先通过测量支气管肺泡灌洗液和血浆中的CXCL 12来检查CXCL 12是否是经历适应性修复的ARDS患者的生物标志物。此外,我们将使用来自ARDS患者的尸检样本来评估CXCR 4和磷酸化(活化)ASK 1的表达。在第二个目标中,我们将研究CXCR 4,FAK和ASK 1之间的相互作用,从LPS引起的肺损伤恢复过程中作为肺炎模型。我们将使用在肺上皮中CXCR 4条件性缺失的小鼠以及ASK 1敲除小鼠。我们还将研究这些信号分子在培养的肺泡上皮细胞在划痕模型的生化相互作用。在第三个目标中,我们将研究在肺炎(LPS)和机械通气联合模型中,高拉伸机械通气或培养细胞的周期性拉伸如何在修复过程中破坏这些信号通路。这些研究将阐明参与肺泡上皮修复的新信号通路以及机械拉伸如何破坏修复过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER M WATERS其他文献
CHRISTOPHER M WATERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER M WATERS', 18)}}的其他基金
Sex differences in ASK1-mediated pulmonary fibrosis
ASK1介导的肺纤维化的性别差异
- 批准号:
10582848 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
- 批准号:
10321905 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
- 批准号:
10721144 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
- 批准号:
10385949 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
- 批准号:
10547744 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
- 批准号:
10553896 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Biophysical Mechanisms of Hyperoxia-Induced Lung Injury
高氧引起的肺损伤的生物物理机制
- 批准号:
10614659 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Biophysical Mechanisms of Hyperoxia-Induced Lung Injury
高氧引起的肺损伤的生物物理机制
- 批准号:
10374099 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Developing novel technologies to address fundamental questions about second messenger signaling
开发新技术来解决有关第二信使信号传导的基本问题
- 批准号:
9296950 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
From structure to systems: Understanding cyclic di-GMP control of transcription
从结构到系统:了解转录的环状二 GMP 控制
- 批准号:
9102193 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别: