Exploring cyclic di-nucleotide signaling across the tree of life

探索生命树中的环状二核苷酸信号传导

基本信息

  • 批准号:
    10721144
  • 负责人:
  • 金额:
    $ 11.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Summary: Exploring cyclic di-nucleotide signaling across the tree of life All organisms utilize molecular regulatory mechanisms connecting external sensory systems to phenotypic output. Cyclic di-nucleotide (cdN) second messenger molecules are one such fundamental system conserved from bacteria to humans. In bacteria, cdNs regulate numerous phenotypes including but not limited to biofilm formation, motility, virulence, stress responses, DNA repair, cell morphology, and phage defense. Eukaryotes also utilize cdNs for complex multicellular development pathways and activation of the innate immune system to mobilize anti-viral and anti-cancer immune responses. Although cdNs play such important functions across the phylogenetic tree, they have only been intensively studied for about 15 years in bacteria and only a few years in eukaryotic systems. There remain many outstanding questions such as the diversity of cdN signaling systems, the environmental signals that induce their production, the molecular mechanisms that sense and respond to them, the phenotypes cdNs regulate, and the adaptive benefit of such signaling systems. My laboratory has studied cdN signaling since its inception in 2008, and we have made fundamental contributions to this field. Our research has elucidated both transcriptional and post-transcriptional mechanisms by which the cdN cyclic di-GMP regulates gene expression in the bacterial pathogen Vibrio cholerae. We have also greatly expanded our understanding of the phenotypes controlled by cyclic di-GMP including DNA repair, stress responses, and cell curvature. We discovered and characterized the first bacterial protein receptor of cyclic GMP-AMP, a phospholipase encoded by V. cholerae we named CapV. Our search for novel cdNs led us to discover that the yeast Saccharomyces cerevisiae synthesizes cyclic di-UMP, the first pyrimidine cdN detected in vivo, in response to heat shock. We propose to answer fundamental questions about cdNs by defining cyclic di-GMP gene regulation and phenotypic control in V. cholerae and deciphering how such regulatory networks impact bacterial fitness. Our studies will also further characterize the novel cyclic GMP-AMP pathway we have discovered in V. cholerae and extend our studies of cyclic GMP-AMP-like signaling pathways into other bacteria. Finally, we will identify the cyclic di-UMP synthase in S. cerevisiae, determine the impact of this cdN on yeast physiology, and search for cyclic di-UMP signaling in other eukaryotic cells. Our explorations spanning bacteria to eukaryotes will make significant contributions to answering fundamental questions about cdN signaling.
总结:探索生命之树中的环状二核苷酸信号传导 所有生物体都利用分子调节机制将外部感觉系统与表型 输出.环状二核苷酸(cdN)第二信使分子是这样一个基本系统保守 从细菌到人类。在细菌中,cdN调节许多表型,包括但不限于生物膜 形成、运动性、毒力、应激反应、DNA修复、细胞形态和噬菌体防御。真核 还利用cdN进行复杂的多细胞发育途径和激活先天免疫系统 动员抗病毒和抗癌免疫反应。虽然cdn在整个网络中发挥着如此重要的作用, 在系统发育树中,它们只在细菌中被深入研究了大约15年, 在真核生物系统中。但仍有许多悬而未决的问题,如cdN信号的多样性 系统,诱导其产生的环境信号,感知和 响应于它们,表型cdNs调节,以及这种信号系统的适应性益处。我 实验室自2008年成立以来一直在研究cdN信号传导,我们做出了重要贡献 到这个领域。我们的研究阐明了转录和转录后机制, cdN环状二-GMP调节细菌病原体霍乱弧菌中的基因表达。我们也大大 扩大了我们对环二GMP控制的表型的理解,包括DNA修复,应激 反应和细胞曲率。我们发现并鉴定了第一个细菌蛋白受体的环状 GMP-AMP是由霍乱弧菌编码的一种磷脂酶,我们将其命名为CapV。我们对新型cdN的研究使我们 发现酵母酿酒酵母合成环状二-UMP,检测到的第一个嘧啶cdN 在体内,对热休克的反应。我们建议通过定义循环来回答关于cdN的基本问题 霍乱弧菌中的二GMP基因调控和表型控制,并破译这种调控网络 影响细菌适应性。我们的研究还将进一步表征我们所发现的新的环GMP-AMP途径。 并将我们对环GMP-AMP样信号通路的研究扩展到其他 细菌最后,我们将确定环二UMP合酶在S。cerevisiae,确定这个cdN的影响 酵母生理学,并在其他真核细胞中寻找环状双UMP信号。我们的探险 从细菌到真核生物将对回答以下基本问题做出重大贡献: cdN信令。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER M WATERS其他文献

CHRISTOPHER M WATERS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER M WATERS', 18)}}的其他基金

Sex differences in ASK1-mediated pulmonary fibrosis
ASK1介导的肺纤维化的性别差异
  • 批准号:
    10582848
  • 财政年份:
    2023
  • 资助金额:
    $ 11.79万
  • 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
  • 批准号:
    10321905
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
  • 批准号:
    10385949
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
  • 批准号:
    10547744
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
Exploring cyclic di-nucleotide signaling across the tree of life
探索生命树中的环状二核苷酸信号传导
  • 批准号:
    10553896
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
Biophysical Mechanisms of Hyperoxia-Induced Lung Injury
高氧引起的肺损伤的生物物理机制
  • 批准号:
    10614659
  • 财政年份:
    2020
  • 资助金额:
    $ 11.79万
  • 项目类别:
Biophysical Mechanisms of Hyperoxia-Induced Lung Injury
高氧引起的肺损伤的生物物理机制
  • 批准号:
    10374099
  • 财政年份:
    2020
  • 资助金额:
    $ 11.79万
  • 项目类别:
Developing novel technologies to address fundamental questions about second messenger signaling
开发新技术来解决有关第二信使信号传导的基本问题
  • 批准号:
    9296950
  • 财政年份:
    2017
  • 资助金额:
    $ 11.79万
  • 项目类别:
From structure to systems: Understanding cyclic di-GMP control of transcription
从结构到系统:了解转录的环状二 GMP 控制
  • 批准号:
    9102193
  • 财政年份:
    2015
  • 资助金额:
    $ 11.79万
  • 项目类别:
From structure to systems: Understanding cyclic di-GMP control of transcription
从结构到系统:了解转录的环状二 GMP 控制
  • 批准号:
    8887427
  • 财政年份:
    2015
  • 资助金额:
    $ 11.79万
  • 项目类别:

相似国自然基金

Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
  • 批准号:
    81971557
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
  • 批准号:
    51678163
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
  • 批准号:
    BB/Y003187/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
  • 批准号:
    2349218
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
  • 批准号:
    23K25843
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
  • 批准号:
    2468773
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Studentship
Cell wall dynamics in Gram-positive bacteria
革兰氏阳性细菌的细胞壁动力学
  • 批准号:
    502580
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
BacNLR - Functional diversity of NLRs in multicellular bacteria
BacNLR - 多细胞细菌中 NLR 的功能多样性
  • 批准号:
    EP/Z000092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Research Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了