Atomic resolution protein structures from electron diffraction of oriented ions
通过定向离子的电子衍射获得原子分辨率的蛋白质结构
基本信息
- 批准号:9066716
- 负责人:
- 金额:$ 26.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnisotropyBindingBiologicalBiophysicsChargeChillsCollectionComplexCountryCrystallizationCrystallographyDataData QualityDetectionDevelopmentDisciplineElectron BeamElectron Diffraction MicroscopyElectronsElectrospray IonizationFreezingFutureGasesGenerationsGenomeGoalsGrantHealthHeatingHeliumHourHuman GenomeImageIndividualIntegral Membrane ProteinInvestmentsIonsKnowledgeLaboratoriesLasersLigand BindingLightMapsMass Spectrum AnalysisMethodsMolecularMolecular ConformationMolecular StructureMutationOpticsOrganic solvent productPharmaceutical PreparationsPhasePhysiologic pulsePreclinical Drug EvaluationProcessPropertyProteinsRadiationResolutionRestSamplingSolventsStructureSystemTechnologyTemperaturebasecryogenicsdesigndisease-causing mutationelectric fieldelectron densityelectron diffractionimaging systeminnovationinsightinstrumentmacromoleculemillisecondnext generationnovel strategiesprotein complexprotein foldingprotein structuresingle moleculestructural biology
项目摘要
The human genome has been sequenced for a decade, but solving how proteins fold and assemble into
complexes remains a challenge. More than half of all proteins -- including 95% of integral membrane
proteins -- do not crystallize and thus their structures cannot be determined by crystallography. Our
project addresses this problem by creating an instrument that can determine atomic-resolution structures
of individual biological macromolecules without requiring crystallization. We propose to merge four
distinct technologies that should allow structures of macromolecules up to a megaDalton to be resolved at
high resolution (better than 2 ¿) in a few hours. The key steps are a) to electrospray and purify
macromolecules by mass spectrometry, b) to quickly chill these macromolecules to near absolute zero
temperature with superfluidic helium droplets, c) to controllably orient several thousand chilled
macromolecules to within ~1¿ for 50 ¿s using intense elliptically polarized IR laser light while confining
them in a small "diffraction" zone, and d) to collect continuous diffraction images from these oriented
macromolecules using a pulsed electron beam. Steps c) and d) will be repeated for each orientation to
span the reciprocal space at 1¿ intervals by rotating the polarization of the laser. The continuous
diffraction images provide sufficient information to directly calculate phases by well-established
oversampling methods thereby directly yielding electron density maps. In this grant period, our goal is to
demonstrate the proof-of-concept by recording anisotropic electron diffraction images from laser aligned
protein ions embedded in superfluid helium droplets. Further development will address the resolution
and quality of data issues with major improvements in experimental hardware. This idea is based on
recent breakthroughs in several disciplines. A large body of evidence has established that protein
complexes can retain their conformation, remain associated in large multimeric complexes and keep
ligands bound in vacuo after electrospray ionization. Capitalizing on recent advances in laser-induced
alignment at superfluid helium temperatures (0.37 Kelvin), our proposed instrument will instantaneously
freeze macromolecules, allowing them to be oriented within 1¿ in all three Euler angles by a 200,000
V/cm electric field generated by the IR laser. Ultimately, this approach will allow structures to be
determined at high resolution in a few hours from a few nanomoles of partially purified complexes of
proteins that are otherwise inaccessible by current methods. If successful, this instrument will reshape the
landscape of structural biology, transform structure-based drug screening, allow rapid determination of
the effects of mutations on structure, and open new realms of biophysics to understand the effects of
solvent on structure.
人类基因组测序已经进行了十年,但解决了蛋白质如何折叠和组装成
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Kong其他文献
Wei Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Kong', 18)}}的其他基金
Combining native protein mass spectrometry with serial electron diffraction to solve atomic structures of mass selected macromolecules
将天然蛋白质质谱与串行电子衍射相结合来解析质量选择的大分子的原子结构
- 批准号:
10637752 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Cancer therapy with a combination of oncolytic bacteria and virus to enhance targeted cell killing and anti-tumor immune responses
结合溶瘤细菌和病毒进行癌症治疗,增强靶向细胞杀伤和抗肿瘤免疫反应
- 批准号:
10319008 - 财政年份:2020
- 资助金额:
$ 26.23万 - 项目类别:
Atomic resolution protein structures from electron diffraction of oriented ions
通过定向离子的电子衍射获得原子分辨率的蛋白质结构
- 批准号:
8843466 - 财政年份:2013
- 资助金额:
$ 26.23万 - 项目类别:
Atomic resolution protein structures from electron diffraction of oriented ions
通过定向离子的电子衍射获得原子分辨率的蛋白质结构
- 批准号:
8507067 - 财政年份:2013
- 资助金额:
$ 26.23万 - 项目类别:
Atomic resolution protein structures from electron diffraction of oriented ions
通过定向离子的电子衍射获得原子分辨率的蛋白质结构
- 批准号:
8728282 - 财政年份:2013
- 资助金额:
$ 26.23万 - 项目类别:
Engineered self-destructing Salmonella as a colorectal cancer cure
工程化的自毁性沙门氏菌作为结直肠癌的治疗方法
- 批准号:
8079475 - 财政年份:2010
- 资助金额:
$ 26.23万 - 项目类别:
Engineered self-destructing Salmonella as a colorectal cancer cure
工程化的自毁性沙门氏菌作为结直肠癌的治疗方法
- 批准号:
7962999 - 财政年份:2010
- 资助金额:
$ 26.23万 - 项目类别:
Crystallography without crystals: Atomic structure determination of laser oriente
无晶体的晶体学:激光取向的原子结构测定
- 批准号:
7834012 - 财政年份:2009
- 资助金额:
$ 26.23万 - 项目类别:
Crystallography without crystals: Atomic structure determination of laser oriente
无晶体的晶体学:激光取向的原子结构测定
- 批准号:
7937870 - 财政年份:2009
- 资助金额:
$ 26.23万 - 项目类别:
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 26.23万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 26.23万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Research Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Continuing Grant