Multi-Scale In Vitro 3D Tissue Model of Vascularized Bone-Cartilage Interactions
血管化骨软骨相互作用的多尺度体外 3D 组织模型
基本信息
- 批准号:9376268
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-19 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsArchitectureBasic ScienceBehaviorBiologicalBiological AssayBiological FactorsBiological MarkersBiologyBlood VesselsBone TissueCartilageCell CommunicationCellsCellular MorphologyChondrocytesChronic DiseaseClinicalCoculture TechniquesCollaborationsCollagen Type IICommunicationComplexDegenerative polyarthritisDevelopmentDiseaseDisease ProgressionDisease modelEDN1 geneElementsEndothelial CellsEngineeringEnvironmentEthicsEvaluationExposure toFibroblastsGap JunctionsHarvestImageryImmuneIn VitroIndividualIndustrializationIndustryInflammatoryInterleukin-6InvestigationMediatingMicrofluidic MicrochipsMicrofluidicsModelingMonitorMorphologyMusculoskeletalNatureOpticsOsteoblastsOsteocalcinOsteoclastsPharmaceutical PreparationsPhasePhysiologicalPlasticizersProtocols documentationSideSignal TransductionSignaling MoleculeSkeletal DevelopmentStromal CellsSystemTNF geneTNFSF11 geneTherapeuticTherapeutic EquivalencyTimeTissue EngineeringTissue ModelTissuesUniversitiesVascular Endothelial Celladalimumabaggrecanarthropathiesbasebonebone cellcadherin 5cartilage cellcartilage degradationcell behaviorcell typecytokinedesigndrug developmentexperimental studyfeedingimprovedin vitro Modelin vivoinhibitor/antagonistmacrophagemulti-scale modelingmultidisciplinarynovel therapeuticsosteochondral tissuephase 2 studyphysiologic modelpredictive modelingresponsescreeningsmall molecule therapeuticstissue regeneration
项目摘要
Abstract
Current in vitro models of vascularized bone tissues do not mimic the in vivo microenvironment comprising of
diverse cell types in communication with each other through stromal barriers. In addition, they are hampered
by lack of real-time visualization and quantitation of vasculature-bone as well as bone-cartilage interactions. In
contrast, animal models while providing useful information are time consuming, expensive and in recent years,
have increasingly raised ethical concerns. Furthermore, animal studies provide limited understanding of
mechanistic behavior compared to well-controlled in vitro studies. Thus, there is an unmet need for an in vitro
platform for improved monitoring and analysis of vascularized bone-cartilage interactions.
We propose to develop and demonstrate a multi-scale model of vascularized bone-cartilage tissue for the
understanding of cellular signaling with a Phase I focus on the interactions between endothelial cells, bone
cells, specifically osteoblasts (bone-building cells) and osteoclasts (bone-degrading cells), and chondrocytes
(cartilage cells). The multi-scale nature of the proposed approach is based on the use of (a) a microscale
based vascular bone-cartilage model using microfluidics and tissue engineering to study cell signaling, which
informs (b) a meso-scale vascular bone-cartilage model interrogating both engineered constructs and native
tissues for structural and functional studies.
Phase I will clearly and unequivocally demonstrate the use of this multiscale model of vascularized
osteochondral tissue interactions for cell signaling. The developed platform will mimic the morphology,
physiological flow and 3D multi-cellular compositions observed in vivo and enable an easy and robust system
for evaluation of cellular responses. In Phase II, the platform will be expanded to include other stromal cells
(e.g., fibroblasts), and immune cells (e.g., macrophages), followed by detailed characterization of the signaling
molecules and therapeutic screening. A multi-disciplinary industry-academic partnership with expertise in
microfluidics cell based assays and musculoskeletal biology and tissue regeneration
has been assembled for successful completion of this project. By providing an accurate, quantitative and
predictive model of physiological interactions, the developed multi-scale platform promises to establish a new
paradigm for in vitro assessment of the physiological response to therapeutics.
摘要
目前血管化骨组织的体外模型不能模拟体内微环境,
不同的细胞类型通过基质屏障相互通讯。此外,他们还受到阻碍,
缺乏血管-骨以及骨-软骨相互作用的实时可视化和定量。在
相比之下,动物模型在提供有用信息的同时既耗时又昂贵,而且近年来,
越来越多地引起了道德上的关注。此外,动物研究提供了有限的理解,
与良好对照的体外研究相比,因此,存在对体外免疫的未满足的需求。
用于改善血管化骨-软骨相互作用的监测和分析的平台。
我们建议开发和展示一个多尺度的血管化骨软骨组织模型,
了解细胞信号传导,第一阶段重点关注内皮细胞、骨骼之间的相互作用
细胞,特别是成骨细胞(骨生成细胞)和破骨细胞(骨降解细胞),以及软骨细胞
(软骨细胞)。所提出的方法的多尺度性质是基于使用(a)微尺度
基于血管的骨软骨模型,使用微流体和组织工程来研究细胞信号传导,
告知(B)询问工程化构建体和天然骨-软骨的中尺度血管骨-软骨模型,
用于结构和功能研究的组织。
第一阶段将清楚和明确地证明使用这种多尺度模型的血管化,
骨软骨组织相互作用的细胞信号。开发的平台将模仿形态学,
在体内观察到的生理流动和3D多细胞组成,并实现简单和稳健的系统
用于评估细胞反应。在第二阶段,该平台将扩大到包括其他基质细胞
(e.g.,成纤维细胞),和免疫细胞(例如,巨噬细胞),然后详细表征信号转导
分子和治疗筛选。一个多学科的行业和学术合作伙伴关系,
微流控细胞分析和肌肉骨骼生物学和组织再生
为成功完成这个项目而进行的。通过提供准确、定量和
生理相互作用的预测模型,开发的多尺度平台有望建立一个新的
用于体外评估对治疗剂的生理反应的范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BALABHASKAR PRABHAKARPANDIAN其他文献
BALABHASKAR PRABHAKARPANDIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BALABHASKAR PRABHAKARPANDIAN', 18)}}的其他基金
Multi-Scale In Vitro 3D Tissue Model of Vascularized Bone-Cartilage Interactions
血管化骨-软骨相互作用的多尺度体外 3D 组织模型
- 批准号:
10259212 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
A Predictive In Vitro Model for Screening Personalized Responses to CFTR-directed Therapeutics
用于筛选 CFTR 导向治疗的个性化反应的预测体外模型
- 批准号:
9178545 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
IGF::OT::IGF SBIR PHASE II TOPIC 328: SYNVIVO-TUMOR: A PHYSIOLOGICAL 3D MODEL OF THE TUMOR MICROENVIRONMENT
IGF::OT::IGF SBIR 第二阶段主题 328:SYNVIVO-肿瘤:肿瘤微环境的生理 3D 模型
- 批准号:
9357185 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
A NOVEL MICROFLUIDIC DEVICE FOR SELECTION AND OPTIMIZATION OF DRUG DELIVERY VEHIC
用于选择和优化药物输送载体的新型微流体装置
- 批准号:
8394872 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
A novel physiologically realistic microfluidic in-vitro blood-brain barrier model
一种新颖的生理真实微流控体外血脑屏障模型
- 批准号:
8469865 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
A NOVEL MICROFLUIDIC DEVICE FOR SELECTION AND OPTIMIZATION OF DRUG DELIVERY VEHIC
用于选择和优化药物输送载体的新型微流体装置
- 批准号:
8551636 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
A Novel Microfluidic Device for Selection and Optimization of Drug Delivery Vehic
用于选择和优化药物输送载体的新型微流控装置
- 批准号:
7672007 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
A novel physiologically realistic microfluidic in-vitro blood-brain barrier model
一种新颖的生理真实微流控体外血脑屏障模型
- 批准号:
8200678 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
A Novel Physicologically Realistic Microfluidic In-vitro Blood-brain Barrier Mode
一种新颖的生理真实微流控体外血脑屏障模式
- 批准号:
7612583 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Microfluidic Chip and Software for Microvascular Studies
用于微血管研究的微流控芯片和软件
- 批准号:
6833765 - 财政年份:2004
- 资助金额:
$ 22.5万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Training Grant














{{item.name}}会员




