A novel physiologically realistic microfluidic in-vitro blood-brain barrier model
一种新颖的生理真实微流控体外血脑屏障模型
基本信息
- 批准号:8200678
- 负责人:
- 金额:$ 68.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelApicalAstrocytesBasic ScienceBiochemicalBiologicalBiological AssayBiologyBlood - brain barrier anatomyBlood flowBrainCell LineCellsCharacteristicsChemicalsCoculture TechniquesCollaborationsConditioned Culture MediaConnexinsDataDevicesDrug Delivery SystemsDrug usageElectrical ResistanceElectrodesEndothelial CellsEngineeringEvaluationFailureGenerationsImageryImmigrationIn VitroInflammatoryInternetJournalsKnowledgeLeukocytesLibrariesMeasurementMeasuresMicrocirculationMicrofluidic MicrochipsMicrofluidicsModelingMonitorNeuraxisNeurogliaNeurologicNeuronsOpticsPediatric HospitalsPenetrationPermeabilityPharmaceutical PreparationsPharmacologic SubstancePhasePhysiologicalPlasticsProcessPublicationsRattusReagentResearchResearch PersonnelSaint Jude Children&aposs Research HospitalScientistScreening procedureSideSimulateStagingTechniquesTechnologyTestingTherapeutic EffectTherapeutic Human ExperimentationTight JunctionsTimeToxic effectUniversitiesUp-RegulationVisualWorkbasecostdata modelingdesigndrug candidatedrug developmentdrug discoveryelectrical measurementimmortalized cellimprovedin vitro Modelin vivoinstrumentationinterestlithographymeetingsmigrationnovelnovel strategiesparticleprotein expressionreceptor expressionshear stresssymposiumtherapeutic development
项目摘要
DESCRIPTION (provided by applicant):
The overall objective of this study is to develop a novel in vitro microfluidic platform to test a drug or delivery vehicle's ability to permeate the Blood-Brain Barrier (BBB). In contrast to current in-vitro models, our proposed device, SIM-BBB, comprises of a microfluidic two-compartment chamber. The chamber is designed in such a way as to permit visualization-friendly evaluation of transport/permeation under appropriate microcirculatory size and flow conditions, while simultaneously simplifying device fabrication. The apical side is seeded with endothelial cells and the basolateral side supports glial cell co-cultures. The increased physiological realism substantially improves BBB characteristics including formation of tight junctions and expression of relevant transporters. The new platform offers greater throughput, increased library coverage, lower cost, rapid turnaround times and increased mechanistic knowledge benefiting drug discovery efforts. In Phase I, the first generation microfluidic SIM-BBB device was designed and fabricated using soft lithography. Brain endothelial cells were cultured in the microfluidic constructs with a perfusate of astrocyte conditioned media. Biochemical analysis showed upregulation of tight junction molecules while optical analysis showed intactness of the BBB in the microfluidic device. Finally, transporters assay was successfully demonstrated in the device. Phase II efforts will focus on optimization of the microfluidic device for enhanced physiological fidelity. Electrodes will be integrated for non-visual monitoring of the endothelial cell layers and tight junction formation via trans-endothelial electrical resistance (TEER) measurements. Finally, the developed technology will be demonstrated for diverse applications including drug penetration studies and leukocyte migration under inflammatory conditions. A multi-disciplinary partnership with expertise in engineering and biology has been assembled for successful completion of the project.
PUBLIC HEALTH RELEVANCE:
The project seeks to develop an in vitro screening model for screening the potential of drug candidates to cross the BBB and subsequently cause therapeutic or toxic effects. By providing accurate and predictive data, the model will reduce the need for animal models and promises to both reduce late stage drug candidate failures and accelerate central nervous system (CNS) therapeutic development. The product will be commercialized to pharmaceutical firms, drug research labs and universities/non-profit centers engaged in novel neurological therapeutics research and CNS toxicity. Equally important, it is also expected to spur basic research, where it can be used to study the biological mechanisms of BBB (dys) function.
描述(由申请人提供):
本研究的总体目标是开发一种新型的体外微流控平台,以测试药物或递送载体渗透血脑屏障(BBB)的能力。与目前的体外模型相比,我们提出的装置,SIM-BBB,包括一个微流体双室。该室的设计方式允许在适当的微循环尺寸和流动条件下对运输/渗透进行可视化友好评价,同时简化了装置制造。顶侧接种内皮细胞,基底侧支持神经胶质细胞共培养。增加的生理现实性显著改善了BBB特征,包括紧密连接的形成和相关转运蛋白的表达。新平台提供了更大的吞吐量,增加了库覆盖率,降低了成本,快速周转时间和增加了有利于药物发现工作的机制知识。在第一阶段,第一代微流控SIM-BBB设备的设计和制造使用软光刻。脑内皮细胞在具有星形胶质细胞条件培养基的灌注液的微流体构建体中培养。生化分析显示紧密连接分子的上调,而光学分析显示微流控装置中BBB的完整性。最后,转运蛋白测定在该装置中被成功地证实。第二阶段的工作将集中在优化微流体装置,以提高生理保真度。将整合电极,通过跨内皮电阻(TEER)测量对内皮细胞层和紧密连接形成进行非目视监测。最后,开发的技术将被证明用于不同的应用,包括药物渗透研究和炎症条件下的白细胞迁移。为成功完成该项目,已组建了一个具有工程和生物学专业知识的多学科伙伴关系。
公共卫生相关性:
该项目旨在开发一种体外筛选模型,用于筛选候选药物穿过血脑屏障并随后引起治疗或毒性作用的潜力。通过提供准确和预测性的数据,该模型将减少对动物模型的需求,并有望减少晚期候选药物的失败,加速中枢神经系统(CNS)治疗的开发。该产品将商业化给制药公司,药物研究实验室和大学/非营利中心从事新的神经治疗研究和中枢神经系统毒性。同样重要的是,它也有望刺激基础研究,在那里它可以被用来研究BBB(dys)功能的生物学机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BALABHASKAR PRABHAKARPANDIAN其他文献
BALABHASKAR PRABHAKARPANDIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BALABHASKAR PRABHAKARPANDIAN', 18)}}的其他基金
Multi-Scale In Vitro 3D Tissue Model of Vascularized Bone-Cartilage Interactions
血管化骨软骨相互作用的多尺度体外 3D 组织模型
- 批准号:
9376268 - 财政年份:2017
- 资助金额:
$ 68.35万 - 项目类别:
Multi-Scale In Vitro 3D Tissue Model of Vascularized Bone-Cartilage Interactions
血管化骨-软骨相互作用的多尺度体外 3D 组织模型
- 批准号:
10259212 - 财政年份:2017
- 资助金额:
$ 68.35万 - 项目类别:
A Predictive In Vitro Model for Screening Personalized Responses to CFTR-directed Therapeutics
用于筛选 CFTR 导向治疗的个性化反应的预测体外模型
- 批准号:
9178545 - 财政年份:2016
- 资助金额:
$ 68.35万 - 项目类别:
IGF::OT::IGF SBIR PHASE II TOPIC 328: SYNVIVO-TUMOR: A PHYSIOLOGICAL 3D MODEL OF THE TUMOR MICROENVIRONMENT
IGF::OT::IGF SBIR 第二阶段主题 328:SYNVIVO-肿瘤:肿瘤微环境的生理 3D 模型
- 批准号:
9357185 - 财政年份:2016
- 资助金额:
$ 68.35万 - 项目类别:
A NOVEL MICROFLUIDIC DEVICE FOR SELECTION AND OPTIMIZATION OF DRUG DELIVERY VEHIC
用于选择和优化药物输送载体的新型微流体装置
- 批准号:
8394872 - 财政年份:2009
- 资助金额:
$ 68.35万 - 项目类别:
A novel physiologically realistic microfluidic in-vitro blood-brain barrier model
一种新颖的生理真实微流控体外血脑屏障模型
- 批准号:
8469865 - 财政年份:2009
- 资助金额:
$ 68.35万 - 项目类别:
A NOVEL MICROFLUIDIC DEVICE FOR SELECTION AND OPTIMIZATION OF DRUG DELIVERY VEHIC
用于选择和优化药物输送载体的新型微流体装置
- 批准号:
8551636 - 财政年份:2009
- 资助金额:
$ 68.35万 - 项目类别:
A Novel Microfluidic Device for Selection and Optimization of Drug Delivery Vehic
用于选择和优化药物输送载体的新型微流控装置
- 批准号:
7672007 - 财政年份:2009
- 资助金额:
$ 68.35万 - 项目类别:
A Novel Physicologically Realistic Microfluidic In-vitro Blood-brain Barrier Mode
一种新颖的生理真实微流控体外血脑屏障模式
- 批准号:
7612583 - 财政年份:2009
- 资助金额:
$ 68.35万 - 项目类别:
Microfluidic Chip and Software for Microvascular Studies
用于微血管研究的微流控芯片和软件
- 批准号:
6833765 - 财政年份:2004
- 资助金额:
$ 68.35万 - 项目类别:
相似国自然基金
FGF8通过Ras/MEK/ERK信号通路调控apical ES结构影响精子生成的机制研究
- 批准号:81801519
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Structural diversity of ceramide moiety responsible for apical membrane function of bladder transitional epithelial cells
负责膀胱移行上皮细胞顶膜功能的神经酰胺部分的结构多样性
- 批准号:
23K08792 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of photodynamic diagnosis for apical periodontitis based on 5-ALA fluorescence live imaging
基于5-ALA荧光实时成像的根尖周炎光动力诊断方法的建立
- 批准号:
23K09188 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Epithelial apical membrane polarization, morphogenesis, and regulation of gene expression
上皮顶膜极化、形态发生和基因表达调控
- 批准号:
BB/X000575/1 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Research Grant
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Evaluation of Trigeminal Ganglia Sensory Neuronal Population/s Mediating MIF-Induced Anti-Nociception in a Model of Apical Periodontitis.
根尖周炎模型中三叉神经节感觉神经元群介导 MIF 诱导的抗伤害感受的评估。
- 批准号:
10822712 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Cell-type specific assembly of apical extracellular matrices
顶端细胞外基质的细胞类型特异性组装
- 批准号:
10749768 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Exploring the role of phosphoinositides in the trafficking of proteins to the apical complex in the malaria parasite Plasmodium falciparum.
探索磷酸肌醇在疟原虫恶性疟原虫顶复合体蛋白质运输中的作用。
- 批准号:
495093 - 财政年份:2023
- 资助金额:
$ 68.35万 - 项目类别:
Operating Grants
Étude du rôle de la phosphatase de phosphoinositides SAC1 dans le trafic de protéines au complexe apical chez le parasite de la malaria Plasmodium falciparum
疟疾疟原虫顶端寄生虫复合物中磷酸肌醇磷酸酶 SAC1 的研究
- 批准号:
486094 - 财政年份:2022
- 资助金额:
$ 68.35万 - 项目类别:
Studentship Programs
Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
- 批准号:
10654029 - 财政年份:2022
- 资助金额:
$ 68.35万 - 项目类别: