Advanced sequencing methods for repeat expansion disorders: exploring the dark matter of next-generation sequencing
重复扩增障碍的先进测序方法:探索下一代测序的暗物质
基本信息
- 批准号:9360220
- 负责人:
- 金额:$ 19.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-24 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesBasic ScienceBiological AssayBiological SciencesCategoriesCentromereDNADNA FragmentationDNA Sequence AlterationDNA sequencingDataDetectionDevelopmentDiagnosisDiseaseElementsExcisionFamilyFragile X SyndromeGeneticGenetic VariationGenetic studyGenomeHereditary DiseaseHigh-Throughput Nucleotide SequencingHuman GenomeHuntington DiseaseHybridsIndividualInvestigationLengthLibrariesMapsMassive Parallel SequencingMeasuresMethodsMicrosatellite RepeatsMolecularMolecular BiologyMutationNerve DegenerationNervous system structureNeurologicNucleotidesPathogenicityPatientsPentasPerformancePopulation StudyPreparationProcessProtocols documentationRepetitive SequenceShort Tandem RepeatSpecimenSymptomsTandem Repeat SequencesTargeted ResequencingTechnologyTissuesValidationVariantanalytical toolbaseclinical diagnosticscostcost effectivecost effectivenessdark matterdisease-causing mutationexomegenetic analysisgenetic pedigreegenome-widegenome-wide analysishuman diseaseindividual patientneuromuscularnext generation sequencingnovelnovel strategiesprobandrapid techniquereconstructionreference genomescreeningsuccesstelomeretoolwhole genome
项目摘要
Short tandem repeats, also known as microsatellites, are relatively unstable DNA elements comprised of repeating
subunits typically ranging from 2-6 bp in length. Large pathogenic expansions in short tandem repeats (hundreds to
thousands of nucleotides) have been implicated in over 40 genetic disorders to date, which are collectively known as
repeat expansion diseases. Although repeat expansion diseases represent a diverse group of genetic disorders, they
typically involve the nervous system and are marked by neurological, neurodegenerative, neuromuscular, and/or
developmental abnormalities. Current approaches for discovering the genetic basis of repeat expansion disorders are
challenging in multiple respects and are often limiting to their study: they rely on the availability of large families with
multiple affected individuals, and employ low-throughput and laborious molecular biology methods. Genetic
investigations for many diseases have now shifted over to using “next-generation” sequencing methods which are capable
of examining variants on a genome-wide scale. However, because next-generation sequencing reads are typically quite
short (100-250 nucleotides) compared to the length of expanded repeat tracts (several hundred to several thousand
nucleotides), there are technical barriers to identifying and accurately typing expanded tandem repeats using this
approach. Here we propose a novel, next-generation sequencing approach which will enable expanded short tandem
repeats to be effectively enriched and typed using short next-generation sequencing reads. In our approach, artificial
genetic diversity is introduced into monotonous repeat sequences through the incorporation of synthetic hybridization
probes containing unique, random DNA tags (unique molecular identifiers). After hybridization of these probes to target
DNA, covalent linkage, and PCR amplification of converted repeat tract DNA, standard protocols for DNA fragmentation
and next-generation sequencing library preparation are applied. Repeat tracts, now containing integrated molecular tags,
are then subjected to massively parallel sequencing. During analysis, reads spanning across adjacent molecular tags are
computationally assembled together into a larger contiguous sequence, enabling reconstruction of the converted tract on
the basis of these synthetic, high diversity regions. After computational removal of the molecular tags, the composition of
the original tract can be accurately resolved. In our first Aim, we will develop and optimize this technology to enable
accurate sizing of expanded repeats across several representative repeat expansion diseases involving tracts of different
lengths and composition. In our second Aim, we will adapt our methods in order to develop a multiplexed panel of probes
targeting all short tandem repeats in the human genome, enabling inexpensive, high-throughput, whole genome screening
for both known and previously unknown expanded repeat diseases. The availability of robust, cost-effective, quantitative,
and generally applicable tools for the detection and characterization of expanded repeat disorders will provide enhanced,
transformative capabilities in the diagnosis and genetic investigation of these disorders. Consequently, these methods will
greatly facilitate genetic discovery and study of repeat expansion diseases, and will have application to typing other
repetitive elements in the genome, including centromeres and telomeres.
短串联重复序列,也称为微卫星,是由重复序列组成的相对不稳定的DNA元件,
亚基的长度通常为2-6 bp。短串联重复序列中的大致病性扩增(数百至
数千个核苷酸)与迄今为止超过40种遗传疾病有关,这些疾病统称为
重复扩张性疾病。虽然重复扩增疾病代表了一组不同的遗传疾病,
通常涉及神经系统,并以神经系统、神经退行性、神经肌肉和/或
发育异常目前用于发现重复扩增障碍的遗传基础的方法是
在多个方面具有挑战性,往往限制他们的研究:他们依赖于大家庭的可用性,
多个受影响的个体,并采用低通量和费力的分子生物学方法。遗传
对许多疾病的研究现在已经转移到使用“下一代”测序方法,
在全基因组范围内检测变异。然而,由于下一代测序读数通常相当复杂,
短(100-250个核苷酸
核苷酸),使用这种方法识别和准确分型扩展的串联重复序列存在技术障碍。
approach.在这里,我们提出了一种新的,下一代测序方法,这将使扩大短串联
使用短的下一代测序读段有效地富集和分型重复序列。在我们的方法中,人工
遗传多样性通过合成杂交的结合被引入到单调重复序列中
含有独特的随机DNA标签(独特的分子标识符)的探针。在这些探针与靶杂交后,
DNA、共价连接和PCR扩增转换的重复序列DNA,DNA片段化的标准方案
和下一代测序文库制备。重复片段,现在包含整合的分子标签,
然后进行大规模平行测序在分析过程中,跨越相邻分子标签的读段是
计算组装在一起,成为一个更大的连续序列,使重建转换道上
这些合成的高多样性区域的基础。在计算去除分子标签后,
可以精确地分辨原始道。在我们的第一个目标中,我们将开发和优化这项技术,
在几种涉及不同的神经束的代表性重复扩增疾病中扩增的重复序列的准确大小测定
长度和组成。在我们的第二个目标中,我们将调整我们的方法,以开发一个多路复用的探针组
靶向人类基因组中的所有短串联重复序列,从而实现廉价、高通量的全基因组筛选
对于已知的和以前未知的扩展重复疾病。可靠的、具有成本效益的、定量的、
并且用于检测和表征扩增重复序列紊乱的普遍适用的工具将提供增强的,
在这些疾病的诊断和遗传研究中的变革能力。因此,这些方法
极大地促进了重复扩增疾病遗传发现和研究,并将应用于对其他
基因组中的重复元件,包括着丝粒和端粒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen J Salipante其他文献
Stephen J Salipante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen J Salipante', 18)}}的其他基金
Efficient, cost-effective, and ultrasensitive sequencing of somatic mutations
高效、经济且超灵敏的体细胞突变测序
- 批准号:
10488391 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Efficient, cost-effective, and ultrasensitive sequencing of somatic mutations
高效、经济且超灵敏的体细胞突变测序
- 批准号:
10675690 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Advanced development and validation of targeted molecular counting methods for precise and ultrasensitive quantitation of low prevalence somatic mutations
先进的开发和验证靶向分子计数方法,用于低流行体细胞突变的精确和超灵敏定量
- 批准号:
9269176 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
Advanced development and validation of targeted molecular counting methods for precise and ultrasensitive quantitation of low prevalence somatic mutations
先进的开发和验证靶向分子计数方法,用于低流行体细胞突变的精确和超灵敏定量
- 批准号:
9515203 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
Advanced development and validation of targeted molecular counting methods for precise and ultrasensitive quantitation of low prevalence somatic mutations
先进的开发和验证靶向分子计数方法,用于低流行体细胞突变的精确和超灵敏定量
- 批准号:
8849721 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
Advanced development and validation of targeted molecular counting methods for precise and ultrasensitive quantitation of low prevalence somatic mutations
先进的开发和验证靶向分子计数方法,用于低流行体细胞突变的精确和超灵敏定量
- 批准号:
9061644 - 财政年份:2015
- 资助金额:
$ 19.38万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 19.38万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 19.38万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 19.38万 - 项目类别: