Finding Good TEMporal PostOperative pain Signatures (TEMPOS)
寻找良好的颞叶术后疼痛特征 (TEMPOS)
基本信息
- 批准号:9291477
- 负责人:
- 金额:$ 50.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAbsence of pain sensationAcuteAddressAgeAlgorithmsAnalgesicsAnestheticsAnxietyBiologicalBlood specimenBrief Pain InventoryCandidate Disease GeneCharacteristicsChronicClinicalClinical DataClinical assessmentsCluster AnalysisCohort StudiesComplexComputerized Medical RecordConsumptionDataDemographic FactorsDevelopmentDevicesDimensionsDrug KineticsEducational BackgroundEquipment and supply inventoriesFemaleGenesGenetic studyHourLeadLinear ModelsLiteratureMachine LearningMarkov ChainsMcGill Pain ScaleMeasuresMental DepressionMethodsMinorityModelingNatureNerve BlockOperative Surgical ProceduresOpioidOrthopedicsOutcomePainPain MeasurementPain intensityPain managementPatient-Controlled AnalgesiaPatientsPatternPerioperativePhenotypePopulationPostoperative PainPostoperative PeriodPredisposing FactorProbabilityProceduresProspective cohortResearchResolutionRiskSeriesSeveritiesSignal TransductionTechniquesTestingTimeTime Series AnalysisTranslatingVariantWorkbasediscrete timeexperienceexperimental studygenetic variantimprovedindexinglearning strategylow socioeconomic statusnovelopioid useprospectivepsychologicpublic health relevancesexsignal processingsocialtemporal measurementtrend
项目摘要
DESCRIPTION (provided by applicant): Over 100 million patients undergo surgery each year in the US, and more than 60% of these patients will suffer from severe acute postoperative pain. Recent data suggest that the time course of pain resolution following surgery is highly variable with over one-third of patients experiencing stable or increasing, rather than decreasing, pain on each day after surgery for at least the first 7 postoperative days. While prior work has focused on linear trajectories of average daily postoperative pain, temporal profiles of pain that measure hourly variations in pain intensity provide a more accurate depiction of the postoperative pain experience than simple linear functions derived from daily pain assessments. The purpose of the proposed research is to elucidate the nature, mechanistic underpinnings, and clinical implications of TEMporal PostOperative pain Signatures (TEMPOS) by applying advanced algorithms to characterize postoperative pain profiles in a prospective cohort. The research will address three Specific Aims: Specific Aim 1: To characterize TEMPOS within the surgical population via state of the art time-series analysis techniques; Specific Aim 2: To identify clinical, biological, psychological, and social (CBPS) mechanisms that contribute to TEMPOS; Specific Aim 3: To determine which TEMPOS optimally predict the development of persistent postsurgical pain. To address these aims, we propose a single-center, prospective observational cohort study of 500 surgical patients. Prior to surgery, sociodemographic variables will be obtained via the electronic medical record (EMR), and patients will complete multiple online inventories for depression, anxiety and catastrophizing. A blood sample will be obtained for genetic studies exploring a variety of pain-related genes, and perioperative surgery and anesthetic details will be extracted from the EMR. Pain outcomes will be assessed at three resolutions: every 6 minutes via a patient-controlled analgesia device interrogation; every four hours via clinical assessments; and every day using the McGill Pain Questionnaire and Brief Pain Inventory. Clinical data on analgesic consumption and patient activity will be used for contextual assessment of pain intensity. Patients will be followed for up to 7 days after surgery, and will again be queried at 6 months after surgery to determine the presence and extent of persistent postsurgical pain. Analyses will first compare existing models, which classify patients as positive, neutral, or negative in pain trajectory slope, with higher-order models offering greater resolution in predicting postoperative pain at discrete time points. We will then perform clustering analyses with respect to the temporal patterns of postoperative pain in order to better define TEMPOS phenotypes. These analyses will be repeated with the clinical, biological, psychological, and social factors listed above to determine how these characteristics drive the mechanisms underlying the observed TEMPOS. Finally, we will use advanced machine learning models to forecast both acute and persistent postoperative pain outcomes with respect to the derived TEMPOS definitions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick J Tighe其他文献
Patrick J Tighe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick J Tighe', 18)}}的其他基金
Perioperative Cognitive Anesthesia Network Extension for Socially Vulnerable Older Adults
针对社会弱势老年人的围手术期认知麻醉网络扩展
- 批准号:
10633174 - 财政年份:2021
- 资助金额:
$ 50.72万 - 项目类别:
Perioperative Cognitive Anesthesia Network Extension for Socially Vulnerable Older Adults
针对社会弱势老年人的围手术期认知麻醉网络扩展
- 批准号:
10281822 - 财政年份:2021
- 资助金额:
$ 50.72万 - 项目类别:
Perioperative Cognitive Anesthesia Network Extension for Socially Vulnerable Older Adults
针对社会弱势老年人的围手术期认知麻醉网络扩展
- 批准号:
10475724 - 财政年份:2021
- 资助金额:
$ 50.72万 - 项目类别:
Finding Good TEMporal PostOperative pain Signatures (TEMPOS)
寻找良好的颞叶术后疼痛特征 (TEMPOS)
- 批准号:
8863868 - 财政年份:2015
- 资助金额:
$ 50.72万 - 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
- 批准号:
8901203 - 财政年份:2012
- 资助金额:
$ 50.72万 - 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
- 批准号:
8353726 - 财政年份:2012
- 资助金额:
$ 50.72万 - 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
- 批准号:
8505014 - 财政年份:2012
- 资助金额:
$ 50.72万 - 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
- 批准号:
8677604 - 财政年份:2012
- 资助金额:
$ 50.72万 - 项目类别: