Deep-radiomics-learning for mass detection in CT colonography
用于 CT 结肠成像中质量检测的深度放射组学学习
基本信息
- 批准号:9167836
- 负责人:
- 金额:$ 25.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAdoptionAdvisory CommitteesAmerican Cancer SocietyAmerican College of RadiologyAnatomyBiological MarkersBiological Neural NetworksCancer EtiologyCategoriesCessation of lifeCharacteristicsClassificationClinicalCollectionColonColon CarcinomaColonoscopyColorectalColorectal CancerComputed Tomographic ColonographyDatabasesDetectionDevelopmentDiagnosisEarly DiagnosisEvaluationExcisionFatigueGoalsGuidelinesHeatingImageImage AnalysisLearningLesionLocationMalignant NeoplasmsMapsMeasurementMethodsPerformancePolypsPopulationPreventionReaderReadingReportingResearchSafetySchemeSocietiesSystemTestingTimeUnited StatesValidationWomanX-Ray Computed Tomographyabstractingaccurate diagnosisbasecompliance behaviorcomputer aided detectioncost effectivecost effectivenessdesigndiagnostic accuracyinnovationlearning strategymenmortalitynovelpreventradiologistradiomicsscreeningtwo-dimensional
项目摘要
Project Summary/Abstract
Colon cancer is the second leading cause of cancer deaths for men and women in the United States. However, it
would be prevented by early detection and removal of its precursor lesions. The use of CT colonography (CTC)
would substantially increase the access, capacity, safety, cost-effectiveness, and patient compliance of colorectal
examinations. The interpretation of CTC examinations would be most effective by use of a first-reader computer-
aided detection (FR-CADe) paradigm, where a radiologist reviews only the lesion candidates detected automatically
by a computer-aided detection (CADe) system. However, because CADe systems can miss large masses,
radiologists still need to perform an additional two-dimensional (2D) review of the CT images of the colon, which
increases reading time over 40% on average. Furthermore, also radiologists can occasionally miss some types of
masses on CTC images. The goal of this project is to develop a DEep RAdiomics LEarning (DERALE) scheme for
the detection of large masses on CTC images. The scheme will be used to integrate deep learning methods and
radiomic biomarkers to perform a complete automated review of CTC images for reliable detection of colorectal
masses. We hypothesize that the DERALE scheme will be able to detect colorectal masses at a sensitivity
comparable to that of unaided expert radiologists and that it can be used to reduce the interpretation time of FR-
CADe without degrading diagnostic accuracy in CTC. We will evaluate and compare the classification performance
of DERALE with that of unaided expert radiologists and conduct an observer performance study to compare the
detection accuracy of the use of DERALE in the FR-CADe paradigm with that of unaided expert radiologists in the
detection of masses from CTC images. Successful development and broad adoption of DERALE in the FR-CADe
paradigm will facilitate early, accurate, and cost-effective diagnoses, and thus it will reduce the mortality rate from
colon cancer, one of the largest threats of cancer deaths in the United States.
项目总结/摘要
结肠癌是美国男性和女性癌症死亡的第二大原因。但
可以通过早期发现和切除其前驱病变来预防。CT结肠成像(CTC)
将大大增加结肠直肠癌的可及性、容量、安全性、成本效益和患者依从性,
考试使用第一阅读器计算机将最有效地解释CTC考试-
辅助检测(FR-CADe)范例,其中放射科医师仅审查自动检测到的病变候选者
计算机辅助检测(CADe)系统。然而,由于CADe系统可能会错过大的质量,
放射科医生仍然需要对结肠的CT图像进行额外的二维(2D)检查,
平均增加阅读时间超过40%。此外,放射科医生偶尔也会错过某些类型的
CTC图像上的肿块。该项目的目标是开发一个深度放射学学习(DERALE)计划,
CTC图像上大肿块的检测。该计划将用于整合深度学习方法,
放射组学生物标志物,对CTC图像进行完整的自动审查,以可靠地检测结直肠癌
群众我们假设DERALE方案将能够检测结直肠肿块的敏感性
与独立的放射科专家相当,可用于减少FR的解释时间,
CADe不会降低CTC的诊断准确性。我们将评估和比较分类性能
DERALE与独立放射科专家的结果进行比较,并进行观察者表现研究,
在FR-CADe范例中使用DERALE的检测准确性与在
从CTC图像中检测肿块。DERALE在FR-CADe中的成功开发和广泛采用
范式将有助于早期,准确和具有成本效益的诊断,因此它将降低死亡率,
结肠癌是美国癌症死亡的最大威胁之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janne Johannes Nappi其他文献
Janne Johannes Nappi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janne Johannes Nappi', 18)}}的其他基金
Deep radiomic colon cleansing for laxative-free CT colonography
深度放射组学结肠清洗,用于无泻药 CT 结肠成像
- 批准号:
9297792 - 财政年份:2017
- 资助金额:
$ 25.65万 - 项目类别:
Deep-radiomics-learning for mass detection in CT colonography
用于 CT 结肠成像中质量检测的深度放射组学学习
- 批准号:
9316607 - 财政年份:2016
- 资助金额:
$ 25.65万 - 项目类别:
Early diagnosis of colon cancer with computer-aided multi-energy CT colonography
计算机辅助多能CT结肠成像早期诊断结肠癌
- 批准号:
8804248 - 财政年份:2014
- 资助金额:
$ 25.65万 - 项目类别:
Early diagnosis of colon cancer with computer-aided multi-energy CT colonography
计算机辅助多能CT结肠成像早期诊断结肠癌
- 批准号:
8621760 - 财政年份:2014
- 资助金额:
$ 25.65万 - 项目类别:
In Vivo Detection of Flat Colorectal Neoplasms with CT Colonography
CT 结肠成像体内检测扁平结直肠肿瘤
- 批准号:
7712639 - 财政年份:2009
- 资助金额:
$ 25.65万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.65万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 25.65万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 25.65万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 25.65万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant