Valens-Poly Sequencing Polyclonal Antibodies for Drug Discovery
用于药物发现的 Valens-Poly 测序多克隆抗体
基本信息
- 批准号:9150642
- 负责人:
- 金额:$ 31.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmino Acid SequenceAnimalsAntibodiesAntibody RepertoireAntibody ResponseAttentionB-LymphocytesChemicalsComplementComplexDNA SequenceDataData SetDatabasesDevelopmentDiseaseDrug resistanceEnzymesGenerationsHealthHumanInfectionKnowledgeLengthMapsMass Spectrum AnalysisMethodsModificationMonoclonal AntibodiesMutationN-terminalPeptide Sequence DeterminationPeptidesPharmaceutical PreparationsPhasePhase II Clinical TrialsProcessProtein IsoformsProteinsProteomicsQuality ControlRNAReportingSamplingSiteSmall Business Innovation Research GrantSpecificityStagingSurvivorsTechnologyTherapeuticTimeTimeLineTranscriptTranslatingVariantbasecostdeamidationdigitaldrug candidatedrug developmentdrug discoverydrug marketimprovednext generationnext generation sequencingnovel therapeuticsoxidationpolyclonal antibodyscreeningtandem mass spectrometrytool
项目摘要
DESCRIPTION (provided by applicant): Antibodies are ideal drug candidates due to high specificity for target molecules. Monoclonal antibodies represent one of the fastest growing segments of the drug market, however, recent attention has focused on polyclonal antibodies and monoclonal mixtures to reduce the opportunity for a disease to become drug resistant. Polyclonal antibodies sampled from disease survivors offer a wealth of new drug candidates. Direct proteomic sequencing of the circulating antibodies is the fastest method to determine the antibody response to a disease, and is a prerequisite for drug development. Previously, we created a mass spectrometry-based, monoclonal antibody sequencing tool, Valens, which we will extend in order to sequence complex antibody samples containing polyclonal antibodies or mixtures of monoclonal antibodies. Current technologies for developing drugs from circulating polyclonal antibodies require weeks of lab time, while our tool, Valens-Poly, will reduce that time
to just days. Chemical modifications to the antibody, such as oxidation and deamidation, may impact the bioactivity and be the result of improper handling. Valens-Poly will identify sites of modification in order to improve quality control of drug candidates. Finally, we will create an interactive interface for Valens-Poly so that it may integrate expert human knowledge with the automated sequencing algorithms. Our tool will also utilize datasets that complement mass spectrometry when available, including Edman degradation-produced N-terminal sequences or next generation sequencing of transcripts.
说明(申请人提供):抗体是理想的候选药物,因为它对靶分子有很高的特异性。单抗是药物市场增长最快的领域之一,然而,最近的注意力集中在多克隆抗体和单克隆混合物上,以减少疾病产生抗药性的机会。从疾病幸存者身上采集的多克隆抗体提供了大量新的候选药物。直接对循环抗体进行蛋白质组学测序是确定抗体对疾病反应的最快方法,也是药物开发的先决条件。在此之前,我们创建了一个基于质谱学的单抗测序工具Valens,我们将对其进行扩展,以便对包含多克隆抗体或单抗混合物的复杂抗体样本进行排序。目前从循环多克隆抗体开发药物的技术需要数周的实验室时间,而我们的工具Valens-Poly将缩短这一时间
只有几天了。对抗体的化学修饰,如氧化和脱酰胺,可能会影响其生物活性,并可能是处理不当的结果。Valens-Poly将确定修饰位置,以改善候选药物的质量控制。最后,我们将为Valens-Poly创建一个交互界面,以便它可以将专家的人类知识与自动测序算法相结合。我们的工具还将利用补充质谱学的数据集,包括Edman降解产生的N-末端序列或下一代转录本测序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalie Castellana其他文献
Natalie Castellana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natalie Castellana', 18)}}的其他基金
Immune repertoire sequencing: error correction, analysis, and visualization on the cloud
免疫组库测序:云端纠错、分析和可视化
- 批准号:
10010744 - 财政年份:2020
- 资助金额:
$ 31.84万 - 项目类别:
An integrated transcriptomic and proteomic approach to antibody sequencing and repertoire characterization
用于抗体测序和库表征的集成转录组学和蛋白质组学方法
- 批准号:
9254618 - 财政年份:2017
- 资助金额:
$ 31.84万 - 项目类别:
Valens-Poly Sequencing Polyclonal Antibodies for Drug Discovery
用于药物发现的 Valens-Poly 测序多克隆抗体
- 批准号:
8981571 - 财政年份:2012
- 资助金额:
$ 31.84万 - 项目类别:
Valens: A Mass Spectrometry-Based Antibody Sequencing Tool by Digital Proteomics
Valens:数字蛋白质组学基于质谱的抗体测序工具
- 批准号:
8474794 - 财政年份:2012
- 资助金额:
$ 31.84万 - 项目类别:
Valens: A Mass Spectrometry-Based Antibody Sequencing Tool by Digital Proteomics
Valens:数字蛋白质组学基于质谱的抗体测序工具
- 批准号:
8311604 - 财政年份:2012
- 资助金额:
$ 31.84万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Continuing Grant