The role of mechanosensation in the vertebrate retina
机械感觉在脊椎动物视网膜中的作用
基本信息
- 批准号:9388693
- 负责人:
- 金额:$ 37.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-12-01 至 2018-09-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAgonistArchitectureAxonAxonal NeuropathyAxonal TransportBehavioralBiochemical PathwayBiophysicsCalciumCell membraneCell physiologyCellsChemicalsChronicCytoskeletonDataDendritesDependenceDevelopmentDiagnosisDiseaseEarly DiagnosisEnvironmentExtracellular MatrixEyeGene ExpressionGeneticGlaucomaGoalsGrowthHomeostasisInflammationInflammatoryInjuryIon ChannelIschemiaKnowledgeLightLinkLipidsLocationMaintenanceMammalian CellMechanical StressMechanicsMediatingMediationModelingMolecularMuller&aposs cellMusMutationNerve DegenerationNeurogliaNeuronal InjuryOcular HypertensionPhenotypePhysiologic Intraocular PressurePhysiologicalPlayPredispositionPressure TransducersPropertyProtein IsoformsRegulationResearchRetinaRetinalRetinal DiseasesRetinal Ganglion CellsRisk FactorsRoleSevere dysplasiaSignal TransductionStimulusStretchingSubcellular structureSwellingSynapsesTRP channelTemperatureTestingTimeTransducersVisionVisualWorkcapsaicin receptorcell injurydesignexperimental studyglial activationhuman diseaseinsightmechanical forcemechanotransductionneuronal cell bodynovelpressureresponseretinal axonretinal neuronsensorsynaptic functiontool
项目摘要
Retinal ganglion cells and Müller glia are particularly susceptible to mechanical forces which drive inflammatory
activation and RGC degeneration in diseases such as glaucoma, but the pressure transduction mechanisms are
not well understood. Earlier studies have been limited to phenotyping the genetic, molecular, cellular and
behavioral consequences of RGC injury and glial activation induced by elevated pressure. While many
biochemical pathways were shown to be altered in hypertensive eyes, the molecular sensors that transduce
mechanical forces remain obscure, confounding interpretations of time-dependence of pressure-induced
remodeling changes within the retina. The dominant hypotheses about pressure injury in glaucoma focus on the
role of forces on the stretch of the lamina cribrosa yet mice develop the disease but do not have the collagenous
lamina. The axocentric hypotheses also cannot explain how mild pressure elevations induce early changes in
dendritic architecture and synaptic function, or activate glia without visible changes in axonal transport. It is also
not known how physiological levels of intraocular pressure might inform RGC physiology and whether they are
sufficient to integrate with the synaptic (light) responses. Finally, although glia are often the earliest responder
to mechanical stress, the mechanisms that impel mechanosensitivity to these cells and how they impact RGC
physiology remain largely unknown.
The proposed work addresses these confounds by identifying the mechanotransducers and elucidating their role
in RGC and Müller glial calcium homeostasis and polymodal integration of pressure into the (patho)physiological
retinal response. The project tests the central hypothesis that pressure sensitivity of dendrites, somata and axons
of RGCs and glia is governed by mechanosensitive ion channels, which maintain tensile homeostasis and
modulate calcium homeostasis, excitability and gliotransmitter release in response to changes in ocular pressure
or strain. Leveraging the recently derived data and using novel mechanobiological tools, Aim 1 will identify and
characterize mechanosensing ion channels in the RGC plasma membrane, quantify their activation by pressure
and matrix stretch, and test the hypothesis that mechanical strains are transmitted from the plasma membrane
into the cell interior through the cytoskeleton. In Aim 2 we propose to characterize the polymodal mechanism
through which mechanical stimuli are integrated with the effects of temperature and synaptic (light) responses,
and to test a novel hypothesis regarding the regulation of RGC tensile homeostasis. Aim 3 will characterize the
molecular mechanisms whereby mechanically induced glial activation influences RGC physiology, thus providing
insight into the early inflammatory mechanisms in diseases such as glaucoma. Taken together, the proposed
studies may deepen our understanding of retinal function by uncovering new mechanisms that respond to acute
and chronic mechanical forces and by reconciling currently disparate hypotheses about retinal pressure
transduction.
In addition, these studies will aid in the understanding of neurodegeneration that is required to optimize early
diagnosis and neuroprotective treatment, which are currently lacking in glaucoma. During the last few years,
mutations in putative mechanosensing ion channels have been shown to cause many human diseases and
disorders, including severe dysplasias, gliovascular abnormalities and axonal neuropathies but their impact on
visual signaling is unknown due to the absence of basic studies. The information provided by these studies may
thus contribute insights into mechanosensitive mechanisms that underlie retinal disease as well as transduction
of mechanical stress within the CNS.
视网膜神经节细胞和Müller神经胶质细胞特别容易受到机械力的影响,
在青光眼等疾病中,压力传导机制与视网膜神经节细胞的激活和变性有关,
没有被很好地理解。早期的研究仅限于对遗传、分子、细胞和
RGC损伤的行为后果和神经胶质细胞活化引起的压力升高。虽然许多
高血压眼的生化途径被证明是改变的,
机械力仍然模糊,混淆了对压力诱导的时间依赖性的解释。
视网膜内的重塑变化。关于青光眼压力损伤的主要假设集中在
力对筛板拉伸的作用然而,小鼠患上了这种疾病,但没有胶原蛋白。
层。轴心假说也不能解释温和的压力升高如何引起早期的变化,
树突结构和突触功能,或激活神经胶质而轴突运输没有明显变化。也是
尚不清楚眼内压的生理水平如何影响RGC的生理学,以及它们是否
足以与突触(光)反应整合。最后,尽管神经胶质细胞通常是最早的反应细胞,
机械应力,促使这些细胞机械敏感性的机制以及它们如何影响RGC
生理学仍然是未知的。
建议的工作解决这些混淆,确定mechanotensors和阐明他们的作用
在RGC和Müller胶质细胞钙稳态和压力多模态整合到(病理)生理
视网膜反应该项目测试了中心假设,即树突,胞体和轴突的压力敏感性
RGC和神经胶质细胞的生长受机械敏感性离子通道控制,其维持张力稳态,
调节钙稳态、兴奋性和神经胶质递质释放以响应眼压的变化
或应变。利用最近获得的数据并使用新的机械生物学工具,目标1将确定并
表征RGC质膜中的机械传感离子通道,量化它们在压力下的激活
和基质拉伸,并测试机械应变从质膜传递的假设
通过细胞骨架进入细胞内部在目标2中,我们提出了多模态机制的特征
通过该传感器机械刺激与温度和突触(光)响应的效应相结合,
并测试一个新的假设,关于调节RGC张力稳态。目标3将描述
机械诱导的胶质细胞活化影响RGC生理学的分子机制,从而提供
深入了解青光眼等疾病的早期炎症机制。综合考虑,
研究可能会加深我们对视网膜功能的理解,揭示新的机制,
和慢性机械力,并通过调和目前关于视网膜压力的不同假设
转导
此外,这些研究将有助于了解神经退行性变,这是需要优化早期
诊断和神经保护治疗,这是目前青光眼缺乏的。在过去的几年里,
推定的机械感测离子通道中的突变已经显示出引起许多人类疾病,
包括严重发育不良、胶质血管异常和轴突神经病在内的疾病,但它们对
由于缺乏基础研究,视觉信号是未知的。这些研究所提供的资料可能
因此有助于深入了解视网膜疾病的机械敏感机制以及转导
中枢神经系统内的机械应力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID KRIZAJ其他文献
DAVID KRIZAJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID KRIZAJ', 18)}}的其他基金
Cellular and Molecular Mechanisms that Contribute to Pressure-Induced Retinal Inflammation and Pathology
导致压力引起的视网膜炎症和病理学的细胞和分子机制
- 批准号:
10656446 - 财政年份:2021
- 资助金额:
$ 37.94万 - 项目类别:
Cellular and Molecular Mechanisms that Contribute to Pressure-Induced Retinal Inflammation and Pathology
导致压力引起的视网膜炎症和病理学的细胞和分子机制
- 批准号:
10219761 - 财政年份:2021
- 资助金额:
$ 37.94万 - 项目类别:
Cellular and Molecular Mechanisms that Contribute to Pressure-Induced Retinal Inflammation and Pathology
导致压力引起的视网膜炎症和病理学的细胞和分子机制
- 批准号:
10430079 - 财政年份:2021
- 资助金额:
$ 37.94万 - 项目类别:
Molecular mechanisms of mechanotransduction in the aqueous outflow pathway
房水流出途径中力转导的分子机制
- 批准号:
9915926 - 财政年份:2017
- 资助金额:
$ 37.94万 - 项目类别:
Molecular mechanisms of mechanotransduction in the aqueous outflow pathway
房水流出途径中力转导的分子机制
- 批准号:
10133080 - 财政年份:2017
- 资助金额:
$ 37.94万 - 项目类别:
Molecular mechanisms of mechanotransduction in the aqueous outflow pathway
房水流出途径中力转导的分子机制
- 批准号:
10665244 - 财政年份:2017
- 资助金额:
$ 37.94万 - 项目类别:
Vision Research Training Grant at the University of Utah
犹他大学视觉研究培训补助金
- 批准号:
10395473 - 财政年份:2014
- 资助金额:
$ 37.94万 - 项目类别:
Vision Research Training Grant at the University of Utah
犹他大学视觉研究培训补助金
- 批准号:
10613426 - 财政年份:2014
- 资助金额:
$ 37.94万 - 项目类别:
Role of mechanosensation in retinal function and dysfunction
机械感觉在视网膜功能和功能障碍中的作用
- 批准号:
8437597 - 财政年份:2012
- 资助金额:
$ 37.94万 - 项目类别:
Role of mechanosensation in retinal function and dysfunction
机械感觉在视网膜功能和功能障碍中的作用
- 批准号:
8586264 - 财政年份:2012
- 资助金额:
$ 37.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.94万 - 项目类别:
Research Grant














{{item.name}}会员




