Biological pacemaker from proof-of-concept to clinic
生物起搏器从概念验证到临床
基本信息
- 批准号:9247470
- 负责人:
- 金额:$ 70.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-27 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenovirus VectorAffectAgeAnimal ModelArrhythmiaAtrioventricular BlockBiodistributionBiological PacemakersBradycardiaCandidate Disease GeneCardiacCardiac MyocytesCardiac ablationCardiotoxicityCathetersCell physiologyCellsCellular MorphologyChemistryChestClinicClinicalClinical ProtocolsClinical TrialsDevicesDominant-Negative MutationDoseElectronicsEngineeringEvaluationExerciseFamily suidaeFutureGene ExpressionGene TransferGenesGoalsHeart BlockHeart RateHumanInfectionInjection of therapeutic agentInvestigational DrugsInvestigational New Drug ApplicationIon ChannelLifeLongitudinal StudiesMapsMethodsModelingPacemakersPatientsPharmacologyPhysiologic MonitoringPhysiologicalPopulationPre-Clinical ModelResearchResearch ProposalsSafetySinoatrial NodeSomatic Gene TherapyTechniquesTestingTherapeutic AgentsThinkingTimeToxicologyTranslatingTranslationsVentricularViralbasechronotropicclinical applicationdesignefficacy testingelectronic pacemakerfeedinggene therapyheart rate variabilityheart rhythmimmune clearanceimplantationin vivominimally invasivenodal myocyteoverexpressionpatient populationpre-clinicalprogramsresearch clinical testingresponsestressorsymposiumsystemic toxicitytherapeutic candidatetranscription factorvector
项目摘要
Project Summary
The overall objective of the proposal is to lay the preclinical groundwork for first-in-human studies of biological
pacemakers (BioP) as alternatives to electronic devices. Gene-based BioP were first described more than a
decade ago; somatic gene transfer of various constructs (a dominant-negative mutant of the inward rectifier
channel [Kir2.1AAA], wild-type HCN channels, and a transcription factor [Tbx18]) have all been shown to
create BioP activity. However, until recently, in vivo preclinical applications have been mostly limited to highly-
invasive models. We have developed a clinically-realistic minimally-invasive delivery technique and used it to
create BioP in a porcine model of complete heart block. Here, we propose to use this approach to compare two
“finalist” therapeutic candidates with fundamentally different mechanisms of action. The first one is a wild-type
ion channel (HCN2) that artificially induces automaticity in ventricular cardiomyocytes by functional re-
engineering. The goal is not to create a faithful replica of a pacemaker cell, but rather to manipulate a single
component of the membrane channel repertoire so as to induce spontaneous firing in an excitable but
normally-quiescent cell. The active principle of the second therapeutic candidate, Tbx18, reprograms
ventricular cardiomyocytes into sinoatrial node (SAN)-like pacemaker cells (induced SAN [iSAN] cells). No one
determinant of excitability is selectively over-expressed: the entire gene expression program is altered, with
resultant changes in fundamental cell physiology and morphology. The proposal utilizes the abovementioned
percutaneous delivery method to refine and validate, in a large-animal model of bradycardia, the approaches
required for translation to the clinic. We will characterize and compare the pacing efficacy and safety of HCN2
and Tbx18-derived BioP, testing the hypothesis that iSAN cells will provide superior chronotropic support as
compared to HCN2. We will go on to perform long-term efficacy, toxicology and biodistribution studies with the
more promising therapeutic candidate, and then prepare, and obtain approval of, an Investigational New Drug
(IND) application for a first-in-human BioP trial. While the ultimate goal may be to render obsolete the
electronic pacemaker, it is important to be realistic in thinking about potential first-in-human applications.
Therefore, we have chosen to develop, initially, a bridge-to-device product that will temporarily provide
hardware-free chronotropic support in infected patients who are pacemaker-dependent. To make BioP
temporary, we deliver the genes in adenoviral vectors, relying on immunological clearance to limit bioactivity.
Nevertheless, we will test catheter ablation of the BioP as a backup rescue strategy in case of persistent
undesired BioP activity. This research proposal is designed to lay the groundwork for clinical testing of an
optimized BioP initially in a needy population.
项目概要
该提案的总体目标是为首次人体生物研究奠定临床前基础
起搏器(BioP)作为电子设备的替代品。基于基因的 BioP 首次被描述超过
十年前;各种构建体的体细胞基因转移(内向整流子的显性失活突变体
通道 [Kir2.1AAA]、野生型 HCN 通道和转录因子 [Tbx18])均已被证明
创建 BioP 活动。然而,直到最近,体内临床前应用大多仅限于高度
侵入性模型。我们开发了一种临床真实的微创输送技术,并将其用于
在完全性心脏传导阻滞的猪模型中创建 BioP。在这里,我们建议使用这种方法来比较两种
“入围”候选治疗药物具有根本不同的作用机制。第一个是野生型
离子通道(HCN2)通过功能性重新人工诱导心室心肌细胞的自动性
工程。我们的目标不是创造起搏细胞的忠实复制品,而是操纵单个起搏细胞
膜通道库的组成部分,以便在可兴奋但但诱导自发放电
正常静止的细胞。第二种候选治疗药物 Tbx18 的活性成分重新编程
心室心肌细胞转化为窦房结 (SAN) 样起搏细胞(诱导 SAN [iSAN] 细胞)。没有人
兴奋性的决定因素被选择性地过度表达:整个基因表达程序被改变,
基本细胞生理学和形态学的最终变化。该提案利用了上述
经皮给药方法,在心动过缓的大型动物模型中完善和验证该方法
需要翻译到诊所。我们将表征并比较 HCN2 的起搏功效和安全性
和 Tbx18 衍生的 BioP,测试 iSAN 细胞将提供卓越的变时支持的假设
与HCN2相比。我们将继续与
更有希望的治疗候选药物,然后准备并获得研究性新药的批准
(IND) 首次人体 BioP 试验申请。虽然最终目标可能是淘汰
电子起搏器,重要的是要现实地考虑潜在的首次人体应用。
因此,我们首先选择开发一种桥接设备产品,该产品将暂时提供
为依赖起搏器的感染患者提供无硬件变时支持。制作 BioP
暂时,我们将基因传递到腺病毒载体中,依靠免疫清除来限制生物活性。
尽管如此,我们将测试 BioP 的导管消融作为备用救援策略,以防持续的情况
不需要的 BioP 活动。该研究计划旨在为临床测试奠定基础
最初在有需要的人群中优化 BioP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugenio Cingolani其他文献
Eugenio Cingolani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugenio Cingolani', 18)}}的其他基金
Calcium Regulation in Heart Failure with Preserved versus Reduced Ejection Fraction
保留射血分数与降低射血分数的心力衰竭中的钙调节
- 批准号:
10161855 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Calcium Regulation in Heart Failure with Preserved versus Reduced Ejection Fraction
保留射血分数与降低射血分数的心力衰竭中的钙调节
- 批准号:
9978114 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Calcium Regulation in Heart Failure with Preserved versus Reduced Ejection Fraction
保留射血分数与降低射血分数的心力衰竭中的钙调节
- 批准号:
10425343 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Biological pacemaker from proof-of-concept to clinic
生物起搏器从概念验证到临床
- 批准号:
9406154 - 财政年份:2016
- 资助金额:
$ 70.3万 - 项目类别:
相似海外基金
Clinical application of boron-conjugated adenovirus vector for neutron capture therapy
硼缀合腺病毒载体中子捕获治疗的临床应用
- 批准号:
19K09482 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vascular-targeted gene therapy to block proliferation of smooth muscle cells using a novel adenovirus vector
使用新型腺病毒载体进行血管靶向基因治疗以阻止平滑肌细胞增殖
- 批准号:
2273599 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Studentship
Gene therapy for diabetes mellitus based on the suppression of lipotoxicity using an improved adenovirus vector
使用改进的腺病毒载体抑制脂毒性的糖尿病基因治疗
- 批准号:
18K14964 - 财政年份:2018
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms of induction of mucosal immunity by adenovirus vector vaccine
腺病毒载体疫苗诱导粘膜免疫的机制
- 批准号:
16K18873 - 财政年份:2016
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Hemophilia B Gene Therapy via CRISPR/Cas9-Targeted Integration of the Factor IX Gene using Adenovirus Vector Delivery
使用腺病毒载体递送通过 CRISPR/Cas9 靶向整合因子 IX 基因进行 B 型血友病基因治疗
- 批准号:
9193681 - 财政年份:2016
- 资助金额:
$ 70.3万 - 项目类别:
Gene therapy for diabetes mellitus and gene function analysis using a novel adenovirus vector
使用新型腺病毒载体进行糖尿病基因治疗和基因功能分析
- 批准号:
15K18939 - 财政年份:2015
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Innate immue response through glycolipids by adenovirus-vector
腺病毒载体通过糖脂产生先天免疫反应
- 批准号:
26450450 - 财政年份:2014
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel method for highly efficient gene targeting by adenovirus vector on human naive pluripotent stem cells
开发一种通过腺病毒载体高效基因靶向人类幼稚多能干细胞的新方法
- 批准号:
26893253 - 财政年份:2014
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of targeting adenovirus vector as boron carrier for boron neutron capture therapy
开发靶向腺病毒载体作为硼中子捕获疗法的硼载体
- 批准号:
26462183 - 财政年份:2014
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of adenovirus vector lacking VA RNA genes for efficient microRNA expression
开发缺乏 VA RNA 基因的腺病毒载体以实现有效的 microRNA 表达
- 批准号:
24701021 - 财政年份:2012
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




