Biological pacemaker from proof-of-concept to clinic
生物起搏器从概念验证到临床
基本信息
- 批准号:9247470
- 负责人:
- 金额:$ 70.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-27 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenovirus VectorAffectAgeAnimal ModelArrhythmiaAtrioventricular BlockBiodistributionBiological PacemakersBradycardiaCandidate Disease GeneCardiacCardiac MyocytesCardiac ablationCardiotoxicityCathetersCell physiologyCellsCellular MorphologyChemistryChestClinicClinicalClinical ProtocolsClinical TrialsDevicesDominant-Negative MutationDoseElectronicsEngineeringEvaluationExerciseFamily suidaeFutureGene ExpressionGene TransferGenesGoalsHeart BlockHeart RateHumanInfectionInjection of therapeutic agentInvestigational DrugsInvestigational New Drug ApplicationIon ChannelLifeLongitudinal StudiesMapsMethodsModelingPacemakersPatientsPharmacologyPhysiologic MonitoringPhysiologicalPopulationPre-Clinical ModelResearchResearch ProposalsSafetySinoatrial NodeSomatic Gene TherapyTechniquesTestingTherapeutic AgentsThinkingTimeToxicologyTranslatingTranslationsVentricularViralbasechronotropicclinical applicationdesignefficacy testingelectronic pacemakerfeedinggene therapyheart rate variabilityheart rhythmimmune clearanceimplantationin vivominimally invasivenodal myocyteoverexpressionpatient populationpre-clinicalprogramsresearch clinical testingresponsestressorsymposiumsystemic toxicitytherapeutic candidatetranscription factorvector
项目摘要
Project Summary
The overall objective of the proposal is to lay the preclinical groundwork for first-in-human studies of biological
pacemakers (BioP) as alternatives to electronic devices. Gene-based BioP were first described more than a
decade ago; somatic gene transfer of various constructs (a dominant-negative mutant of the inward rectifier
channel [Kir2.1AAA], wild-type HCN channels, and a transcription factor [Tbx18]) have all been shown to
create BioP activity. However, until recently, in vivo preclinical applications have been mostly limited to highly-
invasive models. We have developed a clinically-realistic minimally-invasive delivery technique and used it to
create BioP in a porcine model of complete heart block. Here, we propose to use this approach to compare two
“finalist” therapeutic candidates with fundamentally different mechanisms of action. The first one is a wild-type
ion channel (HCN2) that artificially induces automaticity in ventricular cardiomyocytes by functional re-
engineering. The goal is not to create a faithful replica of a pacemaker cell, but rather to manipulate a single
component of the membrane channel repertoire so as to induce spontaneous firing in an excitable but
normally-quiescent cell. The active principle of the second therapeutic candidate, Tbx18, reprograms
ventricular cardiomyocytes into sinoatrial node (SAN)-like pacemaker cells (induced SAN [iSAN] cells). No one
determinant of excitability is selectively over-expressed: the entire gene expression program is altered, with
resultant changes in fundamental cell physiology and morphology. The proposal utilizes the abovementioned
percutaneous delivery method to refine and validate, in a large-animal model of bradycardia, the approaches
required for translation to the clinic. We will characterize and compare the pacing efficacy and safety of HCN2
and Tbx18-derived BioP, testing the hypothesis that iSAN cells will provide superior chronotropic support as
compared to HCN2. We will go on to perform long-term efficacy, toxicology and biodistribution studies with the
more promising therapeutic candidate, and then prepare, and obtain approval of, an Investigational New Drug
(IND) application for a first-in-human BioP trial. While the ultimate goal may be to render obsolete the
electronic pacemaker, it is important to be realistic in thinking about potential first-in-human applications.
Therefore, we have chosen to develop, initially, a bridge-to-device product that will temporarily provide
hardware-free chronotropic support in infected patients who are pacemaker-dependent. To make BioP
temporary, we deliver the genes in adenoviral vectors, relying on immunological clearance to limit bioactivity.
Nevertheless, we will test catheter ablation of the BioP as a backup rescue strategy in case of persistent
undesired BioP activity. This research proposal is designed to lay the groundwork for clinical testing of an
optimized BioP initially in a needy population.
项目摘要
该提案的总体目标是为生物学的首次人体研究奠定临床前基础。
起搏器(BioP)作为电子设备的替代品。基于基因的生物P首先被描述为超过一个
十年前;各种构建体的体细胞基因转移(内向整流子的显性负突变体)
通道[Kir2.1AAA]、野生型HCN通道和转录因子[Tbx 18])都已被证明
创造生物活性。然而,直到最近,体内临床前应用大多限于高度-
入侵模式我们开发了一种临床上现实的微创输送技术,并将其用于
在完全心脏传导阻滞的猪模型中创建BioP。在这里,我们建议使用这种方法来比较两个
具有根本不同的作用机制的“决赛”治疗候选物。第一个是野生型的
离子通道(HCN 2),通过功能性重新激活,
工程.我们的目标不是创造一个忠实的起搏细胞复制品,而是操纵一个单一的
细胞膜通道的组成部分,以诱导在一个可兴奋的,但
正常静止细胞第二种候选治疗药物Tbx 18的活性成分重新编程
心室心肌细胞进入窦房结(SAN)样起搏细胞(诱导的SAN [iSAN]细胞)。没有人
兴奋性的决定因素是选择性过度表达:整个基因表达程序被改变,
导致基本细胞生理学和形态学的变化。该提案利用了上述
在心动过缓的大型动物模型中,
需要翻译到诊所。我们将描述和比较HCN 2的起搏有效性和安全性
和Tbx 18衍生的BioP,检验iSAN细胞将提供上级变时性支持的假设,
与HCN 2相比。我们将继续进行长期疗效,毒理学和生物分布研究,
更有前途的治疗候选药物,然后准备并获得研究新药的批准
(IND)申请首次人体生物磷试验虽然最终的目标可能是使过时的,
电子起搏器,重要的是要现实地考虑潜在的首次在人体中的应用。
因此,我们最初选择开发一种桥接到设备的产品,
起搏器依赖性感染患者的无硬件变时性支持。制作BioP
暂时,我们将基因递送到腺病毒载体中,依靠免疫清除来限制生物活性。
尽管如此,我们将测试BioP的导管消融,作为持续性情况下的备用抢救策略。
不希望的BioP活性。这项研究计划旨在为临床试验奠定基础,
优化BioP最初在贫困人口中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugenio Cingolani其他文献
Eugenio Cingolani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugenio Cingolani', 18)}}的其他基金
Calcium Regulation in Heart Failure with Preserved versus Reduced Ejection Fraction
保留射血分数与降低射血分数的心力衰竭中的钙调节
- 批准号:
10161855 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Calcium Regulation in Heart Failure with Preserved versus Reduced Ejection Fraction
保留射血分数与降低射血分数的心力衰竭中的钙调节
- 批准号:
9978114 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Calcium Regulation in Heart Failure with Preserved versus Reduced Ejection Fraction
保留射血分数与降低射血分数的心力衰竭中的钙调节
- 批准号:
10425343 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Biological pacemaker from proof-of-concept to clinic
生物起搏器从概念验证到临床
- 批准号:
9406154 - 财政年份:2016
- 资助金额:
$ 70.3万 - 项目类别:
相似海外基金
Clinical application of boron-conjugated adenovirus vector for neutron capture therapy
硼缀合腺病毒载体中子捕获治疗的临床应用
- 批准号:
19K09482 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vascular-targeted gene therapy to block proliferation of smooth muscle cells using a novel adenovirus vector
使用新型腺病毒载体进行血管靶向基因治疗以阻止平滑肌细胞增殖
- 批准号:
2273599 - 财政年份:2019
- 资助金额:
$ 70.3万 - 项目类别:
Studentship
Gene therapy for diabetes mellitus based on the suppression of lipotoxicity using an improved adenovirus vector
使用改进的腺病毒载体抑制脂毒性的糖尿病基因治疗
- 批准号:
18K14964 - 财政年份:2018
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms of induction of mucosal immunity by adenovirus vector vaccine
腺病毒载体疫苗诱导粘膜免疫的机制
- 批准号:
16K18873 - 财政年份:2016
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Hemophilia B Gene Therapy via CRISPR/Cas9-Targeted Integration of the Factor IX Gene using Adenovirus Vector Delivery
使用腺病毒载体递送通过 CRISPR/Cas9 靶向整合因子 IX 基因进行 B 型血友病基因治疗
- 批准号:
9193681 - 财政年份:2016
- 资助金额:
$ 70.3万 - 项目类别:
Gene therapy for diabetes mellitus and gene function analysis using a novel adenovirus vector
使用新型腺病毒载体进行糖尿病基因治疗和基因功能分析
- 批准号:
15K18939 - 财政年份:2015
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Innate immue response through glycolipids by adenovirus-vector
腺病毒载体通过糖脂产生先天免疫反应
- 批准号:
26450450 - 财政年份:2014
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel method for highly efficient gene targeting by adenovirus vector on human naive pluripotent stem cells
开发一种通过腺病毒载体高效基因靶向人类幼稚多能干细胞的新方法
- 批准号:
26893253 - 财政年份:2014
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of targeting adenovirus vector as boron carrier for boron neutron capture therapy
开发靶向腺病毒载体作为硼中子捕获疗法的硼载体
- 批准号:
26462183 - 财政年份:2014
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of adenovirus vector lacking VA RNA genes for efficient microRNA expression
开发缺乏 VA RNA 基因的腺病毒载体以实现有效的 microRNA 表达
- 批准号:
24701021 - 财政年份:2012
- 资助金额:
$ 70.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




