Advanced morphological analysis of cerebral blood flow for acute concussion diagnosis and return-to-play determination
用于急性脑震荡诊断和重返赛场确定的脑血流高级形态学分析
基本信息
- 批准号:9323604
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAdoptionAlgorithmic SoftwareAlgorithmsArea Under CurveAssessment toolBlood flowBrain ConcussionCerebrovascular CirculationCessation of lifeClassificationClinicClinicalClinical DataClinical ResearchCollaborationsCommunitiesComplexComputer softwareControlled StudyCore-Binding FactorDataData AnalyticsData CollectionDevelopmentDevicesDiagnosisDiagnosticDiagnostic ProcedureEvaluationFunctional disorderFutureGoalsGoldGuidelinesHealth PersonnelHospitalsImageImpairmentInjuryLettersLicensingMachine LearningMagnetic Resonance ImagingMeasuresMethodsModelingMorphologyNeurocognitiveNeurologistNeurologyOutcomePatientsPediatric NeurologyPerformancePersonsPhasePhysical PerformancePhysiciansPhysiologicalPlayPublic HealthPublicationsReadinessRecoveryResearchResolutionRiskSeveritiesShapesSiteSmall Business Innovation Research GrantSpin LabelsSportsSports MedicineSymptomsSyndromeSystemTechnologyTestingTimeTrainingTraumatic Brain InjuryUltrasonographyUnited StatesVariantbalance testingbasebrain healthcerebral hemodynamicsclinical Diagnosisdiagnostic accuracydisabilityexperimental studyhemodynamicshigh schoolinjuredinnovationmild traumatic brain injurynovelpediatric departmentperformance testsportabilitypreventprogramsrelating to nervous systemsuccesstool
项目摘要
Project Summary / Abstract
Between 1.6 and 3.8 million people each year suffer a mild TBI in the US alone. Reliable diagnosis and prompt
treatments are vital to managing the often-serious short and long-term sequelae resulting from mild TBI.
However, a reliable objective and accurate method for mild TBI diagnosis outside of a hospital setting, and in
particular for determining RTP readiness, has eluded the clinical community. Current diagnosis and RTP
assessments are based on patient symptoms, neurocognitive evaluations, and / or physical performance
testing. Use of symptom scales are problematic for several reasons including subjectivity and reliability.
Neurocognitive evaluations and physical tests (such as balance tests), although less subjective, require pre-
injury baseline testing of subjects due to inherently large subject-to-subject variations in evaluation
performances. Due to these reasons, current mild TBI diagnostic methods have limited applications and are
not suitable for a significant majority of patients who suffer mild TBI.
This project is aimed at developing an objective diagnosis of mild traumatic brain injury (mild TBI) based on
physiologic changes in a patient after injury and providing a platform capable of RTP guidance. The method is
based on quantification of well-known physiologic changes after a concussion, i.e. the impairment of autonomic
function and altered cerebral blood flow (CBF) as measured with transcranial Doppler (TCD). The novelty of
the proposed approach is the use of a recently-developed analytical machine learning framework for the
analysis of the CBF velocity (CBFV) waveforms. In contrast to previous methods used before, the proposed
approach utilizes the entire shape of the complex CBFV waveform, thus obtaining subtle changes in blood flow
that are lost in other analysis methods. Additionally, comprehensive verification between our platform and MRI
will be performed following injury resulting in the first scientific experiments of this kind.
The ultimate goal of this Phase II SBIR is to commercialize an objective and accurate software algorithm for
reliable diagnosis and management of sports concussions which does not currently exist. The outcome will be
a software suite integrated into existing TCD and will be marketed to emergency departments, neurology
clinics, and other healthcare providers involved in mild TBI diagnosis and RTP management.
项目总结/摘要
仅在美国,每年就有160万至380万人患有轻度TBI。可靠的诊断和迅速
治疗对于管理由轻度TBI引起的经常严重的短期和长期后遗症至关重要。
然而,一个可靠的客观和准确的方法,轻度TBI诊断医院以外的环境,并在
特别是用于确定RTP准备就绪,已经回避了临床社区。当前诊断和RTP
评估基于患者症状、神经认知评估和/或身体表现
试验.由于主观性和可靠性等原因,症状量表的使用存在问题。
神经认知评估和身体测试(如平衡测试),虽然主观性较低,但需要预先检查。
由于评价中受试者之间固有的较大差异,受试者的损伤基线测试
表演由于这些原因,目前的轻度TBI诊断方法具有有限的应用,
不适合大多数轻度TBI患者。
该项目旨在开发一个客观的诊断轻度创伤性脑损伤(轻度TBI)的基础上,
生理变化的患者受伤后,并提供一个平台,能够RTP指导。该方法
基于脑震荡后众所周知的生理变化的量化,即自主神经功能的损害,
经颅多普勒(TCD)测量功能和脑血流量(CBF)改变。的新奇
所提出的方法是使用最近开发的分析机器学习框架,
分析CBF速度(CBFV)波形。与以前使用的方法相比,
该方法利用复杂CBFV波形的整个形状,从而获得血流的细微变化
在其他分析方法中丢失的信息。此外,我们的平台和MRI之间的全面验证
将在第一次此类科学实验中受伤后进行。
第二阶段SBIR的最终目标是商业化一个客观和准确的软件算法,
目前尚不存在的运动性脑震荡的可靠诊断和管理。结果会
一套软件集成到现有的TCD中,并将销售给急诊科、神经科、
诊所和其他参与轻度TBI诊断和RTP管理的医疗保健提供者。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noise reduction in intracranial pressure signal using causal shape manifolds.
- DOI:10.1016/j.bspc.2016.03.003
- 发表时间:2016-07
- 期刊:
- 影响因子:5.1
- 作者:Rajagopal A;Hamilton RB;Scalzo F
- 通讯作者:Scalzo F
Detection of Intracranial Hypertension using Deep Learning.
使用深度学习检测颅内高压。
- DOI:10.1109/icpr.2016.7900010
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Quachtran,Benjamin;Hamilton,Robert;Scalzo,Fabien
- 通讯作者:Scalzo,Fabien
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Hamilton其他文献
Robert Hamilton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Hamilton', 18)}}的其他基金
Prehospital Diagnostic Biomarker for Large Vessel Occlusion
大血管闭塞的院前诊断生物标志物
- 批准号:
9980675 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Advanced Morphological Analysis of Cerebral Blood Flow for Acute Concussion Diagnosis
用于急性脑震荡诊断的脑血流高级形态学分析
- 批准号:
8906578 - 财政年份:2015
- 资助金额:
$ 150万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Operating Grants