The role of synaptonuclear signaling proteins in long-term hippocampal synaptic plasticity
突触核信号蛋白在长期海马突触可塑性中的作用
基本信息
- 批准号:9327211
- 负责人:
- 金额:$ 3.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2020-04-14
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAlzheimer&aposs DiseaseBackBindingBinding ProteinsBiochemicalBiologicalBiological AssayBrainCREB1 geneCalcium SignalingCell NucleusCo-ImmunoprecipitationsCommunicationComplementComplexDataDiseaseElectrophysiology (science)EnzymesEventFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGlutamate ReceptorHippocampus (Brain)HistonesHumanImportinsInvestigationKnock-outKnockout MiceKnowledgeLong-Term DepressionLong-Term PotentiationMass Spectrum AnalysisMemoryMusNervous System PhysiologyNervous system structureNeurobiologyNeurologic DysfunctionsNeuronal PlasticityNeuronsNuclearNuclear ImportNuclear Localization SignalPhasePhosphotransferasesPopulationProcessProteinsReceptor ActivationRecruitment ActivityRegulator GenesResearchResourcesRestRoleSchizophreniaSensorySignal TransductionSignaling MoleculeSignaling ProteinSliceStimulusSynapsesSynaptic plasticitySynaptosomesTestingTranscription CoactivatorTravelWorkaddictionalpha Karyopherinsexperienceexperimental studyinsightnervous system disorderneurodevelopmentneuropsychiatric disordernovelnucleocytoplasmic transportprogramsprotein functionresponseretrograde transporttranscription factortranscriptometranscriptome sequencing
项目摘要
Project Abstract:
Synaptic plasticity is a fundamental principle of the nervous system and underlies many neurobiological
processes including neurodevelopment, sensory processing, and memory storage. New gene transcription
is required for long-lasting plasticity, and this requirement for transcription indicates that signals from
stimulated synapses must reach the nucleus via synaptonuclear signaling. One such mechanism of
synaptonuclear signaling that is essential for long-term plasticity is the physical translocation of signaling
proteins from the synapse to the nucleus. While a few dozen proteins are known to undergo activity-
dependent synapse-to-nucleus translocation, little work has been done to systematically identify the
population of proteins that undergo this translocation. Moreover, little is known about the gene expression
programs that these synaptonuclear signaling proteins initiate. This project aims to: 1) Characterize the
gene regulatory role of an exemplar synaptonuclear signaling protein, CREB-Regulated Transcriptional
Coactivator 1 (CRTC1); and 2) Systematically identify proteins that undergo synapse-to-nucleus
translocation during plasticity. For the first aim, electrophysiology will be used to characterize late-phase
long-term potentiation (LTP) and long-term depression (LTD) in acute hippocampal slices from CRTC1
conditional knockout mice to study the function of CRTC1 in long-lasting plasticity. These studies will be
complemented with RNA sequencing to determine the role of CRTC1 in the transcriptional programs that
give rise to long-term plasticity. In the second aim, novel synaptonuclear signaling proteins will be identified
using a biochemical screen. In brief, mass spectrometry will be used to identify synaptic proteins that are
bound to the importin β1 nuclear transport complex and are therefore likely to be cargo destined for nuclear
import. Candidate proteins will be studied in the context of synaptic plasticity. Identifying novel proteins that
translocate from synapse to nucleus will provide insight into the types of signals that translocate during
plasticity, and the identity and function of these synaptonuclear signaling proteins will provide insights into
the regulation of gene expression during plasticity. Synaptic plasticity is widely involved in neurological
function and dysfunction, and therefore addressing these fundamental questions about synaptic plasticity
will provide insight into the mechanisms underlying many neurological and neuropsychiatric disorders.
项目摘要:
突触可塑性是神经系统的基本原理,是许多神经生物学的基础。
包括神经发育、感觉处理和记忆存储的过程。新基因转录
是持久可塑性所必需的,而这种转录要求表明,来自
受刺激的突触必须通过突触核信号到达细胞核。一种这样的机制是
突触核信号对长期可塑性至关重要,它是信号的物理转移
从突触到细胞核的蛋白质。虽然已知有几十种蛋白质具有活性-
依赖的突触到细胞核的易位,几乎没有做过系统地识别
经历这种易位的蛋白质群体。此外,人们对这种基因的表达知之甚少。
这些突触核信号蛋白启动的程序。本项目的目标是:1)描述
典型突触核信号蛋白CREB调节转录的基因调控作用
共激活因子1(CRTC1);和2)系统地识别经历突触到核的蛋白质
可塑性过程中的移位。对于第一个目标,将使用电生理学来表征晚期
CRTC1急性海马片的长时程增强(LTP)和长时程增强(LTD)
条件性基因敲除小鼠研究CRTC1在长期可塑性中的作用。这些研究将是
与RNA测序互补,以确定CRTC1在转录程序中的作用
会产生长期的可塑性。第二个目标是鉴定新的突触核信号蛋白。
使用生化筛查。简而言之,质谱学将被用来识别
运往Importinβ1核运输综合体,因此很可能是运往核运输的货物
导入。候选蛋白质将在突触可塑性的背景下进行研究。鉴定新的蛋白质,
从突触到核团的转移将提供对在以下过程中转移的信号类型的洞察
可塑性,以及这些突触核信号蛋白的身份和功能将为深入了解
可塑性过程中基因表达的调控。突触可塑性广泛参与神经学研究
功能和功能障碍,因此解决了这些关于突触可塑性的基本问题
将提供对许多神经和神经精神障碍潜在机制的洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wendy Herbst其他文献
Wendy Herbst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wendy Herbst', 18)}}的其他基金
Mechanisms of Presynaptic Maintenance in C. elegans
线虫突触前维持机制
- 批准号:
10562841 - 财政年份:2023
- 资助金额:
$ 3.54万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3.54万 - 项目类别:
Research Grant














{{item.name}}会员




