Elucidating the complex genetic and molecular basis of Plasmodium falciparum artemisinin resistance.
阐明恶性疟原虫青蒿素耐药性的复杂遗传和分子基础。
基本信息
- 批准号:9406657
- 负责人:
- 金额:$ 0.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-10 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdmixtureAllelesAnopheles GenusAntioxidantsArtemisininsBiological AssayBloodCambodiaCambodianCell Cycle RegulationCessation of lifeChloroquine resistanceClinicalCoculture TechniquesCollaborationsCombined Modality TherapyComplexComplex Genetic TraitCulicidaeDataDisastersDiseaseDissectionDrug resistanceEvaluationEventExcisionFalciparum MalariaFerredoxinGenesGeneticGenetic PolymorphismGenomic SegmentGenomicsGeographic LocationsGeographyGoldHealthHumanHypoxanthinesImmunoprecipitationIn VitroIndividualInfectionInvestigationIronLaboratoriesLife Cycle StagesLinkage DisequilibriumMalariaMediatingMethodsMidgutMolecularMonitorMorbidity - disease rateMosquito ControlMutationNational Institute of Allergy and Infectious DiseaseOocystsOxidation-ReductionOxidative StressP-GlycoproteinsParasite resistanceParasitesPatient IsolatorsPatientsPennsylvaniaPharmaceutical PreparationsPharmacotherapyPlasmodiumPlasmodium falciparumPopulationPositioning AttributePrevalenceResearchResistanceRiskRoleSoutheastern AsiaTestingTimeTreatment FailureUbiquitinUnited States National Institutes of HealthUniversitiesVaccinesasexualbasebiological adaptation to stresscostdrug sensitivityefficacy studyfeedingfitnessgene functiongenome wide association studyimprovedinnovationinsightmetabolomemetabolomicsmolecular markermortalitymutantnovel strategiesnovel therapeuticspermissivenesspreventprotein degradationpublic health relevancepyrosequencingresistance mechanismresistance mutationtooltranscriptomicstransmission processvector controlvector mosquitozinc finger nuclease
项目摘要
DESCRIPTION (provided by applicant): Malaria is a disease caused by infection with Plasmodium parasites, of which P. falciparum is the deadliest. Half of the world's population is at risk of infection. Increased access to artemisinin-based combination therapies (ACTs) and mosquito vector control initiatives have saved an estimated 3.3 million lives since the year 2000. Despite this substantial progress, malaria remains a major burden to human health with approximately 627,000 deaths in 2012. There is no effective vaccine. Alarmingly, artemisinin resistance has emerged in Southeast Asia. It is imperative that we understand the mechanism and extent of resistance to help prevent a regional crisis from becoming a global disaster. Genomic and transcriptomic analyses of artemisinin-resistant parasites have recently implicated mutations in the K13 gene, with secondary contributions from genes involved in iron transport and ubiquitin-mediated protein degradation. We used zinc-finger nucleases (ZFNs), a transformative genetic editing tool, to show that removing K13 mutations from artemisinin-resistant Cambodian parasites ablates resistance. Inserting K13 mutations into artemisinin-sensitive parasite lines conferred variable degrees of resistance, indicating the influence of a permissive genetic background. We believe that our combination of ongoing evaluation of parasites from Southeast Asia and the ability to swiftly add or remove candidate mutations from isogenic, well-characterized parasites will allow a comprehensive dissection of the resistance mechanism. We will use ZFNs to study the function of K13 and the influence of genetic background on the emergence and spread of artemisinin resistance. Emergence is tied to the mechanism of resistance, whereas spread is tied to transmission. We will use ZFNs to add or remove potential resistance mutations into isogenic parasite lines alone or in combination. To study emergence, we will use both the ring-stage survival assay (RSA0-3h) and a modified [3H]-hypoxanthine incorporation assay to determine artemisinin sensitivity, and explore K13 function through identifying changes in the parasite redox metabolome, ubiquitin-mediated proteasomal degradation, the definition of interacting partners, and K13 subcellular localization. Given current data, we hypothesize that K13 functions as a negative regulator of oxidative stress responses that respond to iron-mediated redox damage. We posit that resistance-associated mutations in K13 reduce function, leading to increased antioxidant capability. To study transmission, we will perform pairwise fitness comparisons of parasites in both asexual blood stages and sexual mosquito stages. An improved understanding of artemisinin resistance will help guide the targeted geographical use of non-artemisinin-based second-line or novel therapies to reduce the burden of malaria.
描述(申请人提供): 疟疾是一种由疟原虫寄生虫感染引起的疾病,其中恶性疟原虫是最致命的。世界上一半的人口面临感染风险。自 2000 年以来,基于青蒿素的联合疗法 (ACT) 和蚊媒控制举措的普及已估计挽救了 330 万人的生命。尽管取得了这一重大进展,但疟疾仍然是人类健康的主要负担,2012 年约有 627,000 人死亡。目前还没有有效的疫苗。令人担忧的是,东南亚出现了青蒿素耐药性。我们必须了解抵抗的机制和程度,以帮助防止地区危机演变成全球灾难。最近对青蒿素抗性寄生虫的基因组和转录组分析表明 K13 基因发生突变,其中涉及铁转运和泛素介导的蛋白质降解的基因发挥了次要作用。我们使用锌指核酸酶 (ZFN)(一种变革性基因编辑工具)来证明,从青蒿素耐药的柬埔寨寄生虫中去除 K13 突变可以消除耐药性。将 K13 突变插入青蒿素敏感的寄生虫系中会产生不同程度的耐药性,这表明了允许的遗传背景的影响。我们相信,我们对东南亚寄生虫的持续评估与从同基因、特征良好的寄生虫中快速添加或删除候选突变的能力相结合,将有助于全面剖析耐药机制。我们将利用ZFNs来研究K13的功能以及遗传背景对青蒿素耐药性的出现和传播的影响。出现与抵抗机制有关,而传播与传播有关。我们将使用 ZFN 在单独或组合的同基因寄生虫系中添加或去除潜在的抗性突变。为了研究出现,我们将使用环期生存测定 (RSA0-3h) 和改良的 [3H]-次黄嘌呤掺入测定来确定青蒿素敏感性,并通过识别寄生虫氧化还原代谢组的变化、泛素介导的蛋白酶体降解、相互作用伙伴的定义和 K13 亚细胞定位来探索 K13 功能。鉴于目前的数据,我们假设 K13 作为氧化应激反应的负调节因子,对铁介导的氧化还原损伤作出反应。我们假设 K13 中与耐药性相关的突变会降低功能,从而导致抗氧化能力增强。为了研究传播,我们将对无性血液阶段和有性蚊子阶段的寄生虫进行成对适应性比较。加深对青蒿素耐药性的了解将有助于指导有针对性地使用非青蒿素二线或新型疗法,以减轻疟疾负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leila Saxby Ross其他文献
Leila Saxby Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leila Saxby Ross', 18)}}的其他基金
Elucidating the complex genetic and molecular basis of Plasmodium falciparum artemisinin resistance.
阐明恶性疟原虫青蒿素耐药性的复杂遗传和分子基础。
- 批准号:
8982903 - 财政年份:2015
- 资助金额:
$ 0.06万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 0.06万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 0.06万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 0.06万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 0.06万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 0.06万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 0.06万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 0.06万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 0.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 0.06万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 0.06万 - 项目类别:














{{item.name}}会员




