Inferential methods to assess the incremental value of new biomarkers in risk classification models

评估风险分类模型中新生物标志物增量价值的推理方法

基本信息

  • 批准号:
    9309399
  • 负责人:
  • 金额:
    $ 28.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Abstract This proposal aims to develop statistical methods to evaluate improvement in risk classification measures due to the inclusion of new biomarkers. Risk classification modeling has a direct impact on patient treatment and health. These models are used to identify the need for diagnostic testing in the general population, or the type of treatment to be administered in a specified patient population. The most common risk classification improvement measures include the difference in the area under the receiver operating characteristic curve, the net reclassification index, the integrated discrimination improvement, and the difference in sensitivity and specificity. The new statistical methods will provide a metric to decide whether a change in patient risk, stemming from the evaluation of new biomarkers, is random variation or a true improvement in the accuracy of a risk classification model. The metric is defined through asymptotic distribution theory within a nested models framework. Methods to assess improvement in the accuracy of risk models are not well-developed, with current methods relying on classical hypothesis tests of association. These tests may lead to dissonance, since the results of parametric association statistics may not align with the nonparametric risk improvement statistics used in the models being evaluated. The objective of this grant proposal is to develop a coherent statistical inferential strategy that directly measures the incremental value of new biomarkers in risk classification models with binary and survival endpoints. The aims of the proposal are: 1) To develop inferential methods for the difference in concordance probability measures from nested proportional hazards models with a survival endpoint.2) To develop inferential methods for the incremental value of Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI) with binary and survival regression models. 3) To develop inferential methods for the incremental value of sensitivity and specificity with binary and survival regression models. Measures of risk classification improvement impact medical decision making. The statistical evaluation of the incremental benefit of a new panel of markers, in relation to clinical measures and laboratory tests that are acquired in the course of routine clinical practice, will play a role in the level of confidence physicians and medical researchers have in updating their medical intervention algorithm.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glenn Heller其他文献

Glenn Heller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glenn Heller', 18)}}的其他基金

BIOSTATISTICS CORE
生物统计学核心
  • 批准号:
    7318397
  • 财政年份:
    2007
  • 资助金额:
    $ 28.27万
  • 项目类别:
BIOSTATISTICS CORE
生物统计学核心
  • 批准号:
    7147040
  • 财政年份:
    2005
  • 资助金额:
    $ 28.27万
  • 项目类别:
Core C
核心C
  • 批准号:
    7129459
  • 财政年份:
    2005
  • 资助金额:
    $ 28.27万
  • 项目类别:
BIOSTATISTICS CORE
生物统计学核心
  • 批准号:
    8555202
  • 财政年份:
    2001
  • 资助金额:
    $ 28.27万
  • 项目类别:
Core B: Biostatistics Core
核心 B:生物统计学核心
  • 批准号:
    9148025
  • 财政年份:
    2001
  • 资助金额:
    $ 28.27万
  • 项目类别:
CORE--BIOSTATISTICS CORE
核心--生物统计核心
  • 批准号:
    6336337
  • 财政年份:
    2000
  • 资助金额:
    $ 28.27万
  • 项目类别:
CORE--BIOSTATISTICS CORE
核心--生物统计核心
  • 批准号:
    6203043
  • 财政年份:
    1999
  • 资助金额:
    $ 28.27万
  • 项目类别:
Biostatistics Core
生物统计学核心
  • 批准号:
    8435576
  • 财政年份:
    1998
  • 资助金额:
    $ 28.27万
  • 项目类别:
CORE--BIOSTATISTICS CORE
核心--生物统计核心
  • 批准号:
    6102012
  • 财政年份:
    1998
  • 资助金额:
    $ 28.27万
  • 项目类别:
BIOSTATISTICS CORE
生物统计学核心
  • 批准号:
    8245888
  • 财政年份:
    1998
  • 资助金额:
    $ 28.27万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了