Illuminating molecular mechanisms of cellular functions by single-molecule and super-resolution imaging
通过单分子和超分辨率成像阐明细胞功能的分子机制
基本信息
- 批准号:9275694
- 负责人:
- 金额:$ 41.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:ActinsAction PotentialsAxonBehaviorBindingCell NucleusCell physiologyCellsChromatinChromatin StructureChromosome TerritoryChromosomesCytoskeletonDNA biosynthesisDevelopmentDimensionsDiseaseEnhancersFunctional disorderFundingGene Expression RegulationGenerationsGenesGenetic RecombinationGenomeGoalsImageImageryImaging DeviceLaboratoriesLightLinkMedicalMembraneMethodsModelingMolecularMolecular ConformationMorphogenesisNational Institute of General Medical SciencesNeuronsPeriodicityPlayProteinsResearchResearch SupportResolutionRoleSkeletonSpectrinStructureSubcellular structureTissuesaxonal degenerationchromatin remodelingfluorescence imaginggene productgenome-widehigh resolution imagingimaging approachimaging capabilitiesimaging modalityimprovedinterestmolecular scalenovelpromoterrepairedsingle moleculesynaptogenesis
项目摘要
Project Summary / Abstract
Understanding the mechanisms of cellular function and their dysfunction in disease requires a detailed picture
of the molecular interactions in cells. In particular, it is desirable to have imaging tools with single-molecule
sensitivity, molecular-scale resolution, and genome-scale capacity to allow direct visualization of these
molecular interactions and to probe the collective behaviors of different genes and gene products that give rise
to cell and tissue function. The long-term research goal of my laboratory is to develop advanced fluorescence
imaging methods that meet these demands and to apply these methods to elucidate molecular mechanisms of
cellular functions that are of both fundamental and medical significance.
In the next five years, we propose to focus our NIGMS-funded research mainly in the following two directions.
(1) To understand the structure and function of a novel cytoskeletal structure in neurons. Our NIGMS-
supported research on the development and application of super-resolution STORM imaging has led to the
discovery of a periodic membrane-associated cytoskeleton structure in neurons, primarily in axons. While we
have a basic model of the ultrastructural organization of some key components of this structure, including
actin, spectrin and associated molecules, we expect many additional protein components to be present in this
structure. These components and their structural organization remain to be determined. Our understanding of
the functional roles of this novel structure is also far from complete. We propose to use super-resolution
imaging in conjunction with other methods to determine the protein components and structural organization of
this periodic skeleton structure, and to investigate its functional roles in axon morphogenesis and
synaptogenesis, action potential generation and propagation, axon degeneration, and other axonal functions.
(2) To investigate the spatial organization of chromatin and chromosomes important for gene regulation. The
spatial organization of chromatin plays an important role in many essential genome functions such as gene
expression regulation, DNA replication, repair and recombination. In particular, many features of the chromatin
conformation have been implicated in gene regulation, such as open and closed chromatin states, promoter-
enhancer interactions, topologically-associated domains, and chromosome territories. Misregulation of
chromatin structures has been implicated in a variety of diseases. However, many gaps remain in our
understanding of the three-dimensional (3D) organization of chromatin and chromosomes. Our NIGMS-
supported research on STORM imaging and chromatin remodeling studies allowed us to develop a super-
resolution chromatin imaging approach and reveal novel chromatin organizations. We will advance our
chromatin/chromosome imaging capability by developing the ability to trace the 3D path of the chromatin chain
in the chromosome and to study questions on chromatin organization that are important for gene regulation.
项目总结/摘要
了解细胞功能及其在疾病中的功能障碍的机制需要一个详细的图片
细胞中分子间的相互作用。特别地,期望具有单分子成像工具,
灵敏度、分子尺度分辨率和基因组尺度的能力,以允许直接可视化这些
分子相互作用,并探测不同基因和基因产物的集体行为,
对细胞和组织功能的影响。我实验室的长期研究目标是开发先进的荧光
成像方法,满足这些要求,并应用这些方法来阐明分子机制,
具有基础和医学意义的细胞功能。
在未来五年,我们建议将NIGMS资助的研究主要集中在以下两个方向。
(1)了解神经元中一种新的细胞骨架结构的结构和功能。我们的NIGMS-
支持的超分辨率STORM成像的开发和应用研究已经导致了
在神经元中发现了周期性的膜相关细胞骨架结构,主要是在轴突中。虽然我们
有一个基本模型的超微结构组织的一些关键组成部分,这一结构,包括
肌动蛋白,血影蛋白和相关分子,我们预计许多额外的蛋白质组分存在于这个
结构这些组成部分及其结构安排仍有待确定。我们理解
这种新结构的功能作用也远未完成。我们建议使用超分辨率
成像结合其他方法来确定蛋白质组分和结构组织,
这种周期性的骨架结构,并研究其在轴突形态发生中的功能作用,
突触发生、动作电位产生和传播、轴突变性和其他轴突功能。
(2)研究染色质和染色体的空间组织对基因调控的重要性。的
染色质空间组织在基因组的许多基本功能中起着重要的作用
表达调控、DNA复制、修复和重组。特别是染色质的许多特征
构象与基因调控有关,如开放和闭合的染色质状态,启动子-
增强子相互作用、拓扑相关结构域和染色体区域。的误调节
染色质结构与多种疾病有关。然而,我们的国家仍然存在许多差距,
了解染色质和染色体的三维(3D)组织。我们的NIGMS-
支持的STORM成像和染色质重塑研究使我们能够开发出一种超级
分辨率染色质成像方法和揭示新的染色质组织。我们将推进我们的
染色质/染色体成像能力,通过开发追踪染色质链3D路径的能力
在染色体上,并研究染色质组织的问题,这对基因调控很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOWEI ZHUANG其他文献
XIAOWEI ZHUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOWEI ZHUANG', 18)}}的其他基金
Illuminating molecular mechanisms of cellular functions by single-molecule and super-resolution imaging
通过单分子和超分辨率成像阐明细胞功能的分子机制
- 批准号:
9474629 - 财政年份:2017
- 资助金额:
$ 41.75万 - 项目类别:
Single-molecule studies of ATP-dependent chromatin remodeling
ATP依赖性染色质重塑的单分子研究
- 批准号:
8706191 - 财政年份:2013
- 资助金额:
$ 41.75万 - 项目类别:
Single-molecule studies of ATP-dependent chromatin remodeling
ATP依赖性染色质重塑的单分子研究
- 批准号:
9053499 - 财政年份:2013
- 资助金额:
$ 41.75万 - 项目类别:
Cellular Entry of Influenza by Single-particle Imaging
通过单粒子成像观察流感病毒的细胞进入
- 批准号:
7286279 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
Super-resolution studies of the entry mechanisms of influenza viruses
流感病毒侵入机制的超分辨率研究
- 批准号:
8204817 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
Super-resolution studies of the entry mechanisms of influenza viruses
流感病毒侵入机制的超分辨率研究
- 批准号:
8392262 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
Cellular Entry of Influenza by Single-particle Imaging
通过单粒子成像观察流感病毒的细胞进入
- 批准号:
6871654 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
Cellular Entry of Influenza by Single-particle Imaging
通过单粒子成像观察流感病毒的细胞进入
- 批准号:
7492222 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
Super-resolution studies of the entry mechanisms of influenza viruses
流感病毒侵入机制的超分辨率研究
- 批准号:
8588337 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
Super-resolution studies of the entry mechanisms of influenza viruses
流感病毒侵入机制的超分辨率研究
- 批准号:
8040533 - 财政年份:2004
- 资助金额:
$ 41.75万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 41.75万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 41.75万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 41.75万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 41.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)