Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
基本信息
- 批准号:9236791
- 负责人:
- 金额:$ 56.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-08 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAction PotentialsAffectAlzheimer&aposs DiseaseAnatomyAnimalsAreaAuditoryAuditory areaBiochemicalBiologyBrainBrain StemCell physiologyCellsCharacteristicsChelating AgentsCommunitiesDiseaseElectrophysiology (science)ElementsEnzymesEpilepsyExcitatory SynapseExposure toFrequenciesFundingGPR39 geneGeneticGlutamate ReceptorGlutamatesGrantHealthHearingImageImaging TechniquesIn VitroIndividualKnockout MiceLabelLeadLong-Term DepressionLoudnessMeasuresMediatingMetalsMissionMolecularMusN-Methyl-D-Aspartate ReceptorsNeurobiologyNeuromodulatorNeuronsNeurosciencesNitric OxidePainPharmacologyPhysiologicalPresynaptic TerminalsProbabilityReceptor ActivationResearchResearch PersonnelRoleSchizophreniaShapesSignal TransductionSliceStudy modelsSynapsesSynaptic TransmissionSynaptic VesiclesSynaptic plasticityTechniquesTestingTinnitusUnited States National Institutes of HealthWorkZincauditory processingauditory stimulusawakebasecalcium indicatorcofactordisabilityendocannabinoid signalingexperienceexperimental studygenetic regulatory proteinglutamatergic signalingimaging approachimprovedin vivoin vivo imaginginterestneocorticalneurotransmissionnovelpostsynapticpresynapticrelating to nervous systemresponserestorationsignal processingsoundtooltwo-photon
项目摘要
Project Summary
As an essential element for cellular function, divalent zinc is a cofactor in a large number enzymes and
regulatory proteins. Since the surprising discovery that zinc is concentrated within synaptic vesicles in many
excitatory synapses in the brain, including in more than 50% of excitatory presynaptic terminals in neocortical
areas, numerous investigators have studied the possible roles of this metal during neurotransmission.
Nonetheless, due to the paucity of zinc–selective tools optimized for neurobiological studies, the physiological
roles of zinc during synaptic transmission remained elusive until recently. Our recent studies, funded by this
grant, used novel tools for chelating and tracking zinc in central synapses and established zinc as an inhibitory
neuromodulator in excitatory synapses. In response to a single presynaptic action potential, synaptic zinc is
released and inhibits postsynaptic glutamate AMPA receptors (AMPARs). Moreover, during repetitive synaptic
stimulation, zinc inhibits extrasynaptic glutamate NMDA receptors (NMDARs) and is necessary along with
GPR39, a putative metabotropic zinc-sensing receptor, for activation of endocannabinoid signaling and
glutamate release inhibition. These effects are experience-dependent because loud sound reduced
presynaptic zinc levels and abolished zinc inhibition of AMPARs, implicating zinc in experience-dependent
AMPAR synaptic plasticity. The establishment of a novel endogenous neuromodulator, acting in many
excitatory synapses throughout the brain, reveals the significance of the work and poses three questions of
fundamental importance to excitatory synaptic signaling and auditory processing: a) what are the dynamics of
the different forms of zinc-mediated inhibition and how do they interact among themselves and with glutamate
neurotransmission to shape excitatory glutamatergic signaling, b) what are the molecular mechanisms
underlying long-lasting, activity-dependent changes in presynaptic zinc levels and how do they interact with
other established plasticity mechanisms, and c) what are the characteristics of auditory stimuli that trigger zinc
release in vivo and how does zinc release affect spontaneous and sound-evoked activity in awake animals.
Answering these questions will contribute significantly not only to the fields of zinc biology and hearing
research, but will also reveal general mechanisms that will be of great interest to the wider neuroscience
community. In Aims 1 and 2, we will employ in vitro brain slice experiments and use auditory brainstem
synapses as models for studying the role of zinc in neurotransmission and plasticity. In Aim 3, we will employ
in vivo imaging to investigate the role of these mechanisms in auditory cortical processing in unanesthetized
mice.
项目摘要
作为细胞功能的必需元素,二价锌是大量酶的辅因子,
调节蛋白自从令人惊讶地发现锌集中在许多神经元的突触囊泡中,
大脑中的兴奋性突触,包括新皮质中超过50%的兴奋性突触前末梢
许多研究人员已经研究了这种金属在神经传递过程中的可能作用。
尽管如此,由于缺乏针对神经生物学研究优化的锌选择性工具,
锌在突触传递过程中的作用直到最近才被发现。我们最近的研究,
格兰特,使用新的工具螯合和跟踪锌在中央突触,并建立锌作为抑制
兴奋性突触中的神经调质。在对单个突触前动作电位的反应中,
释放并抑制突触后谷氨酸AMPA受体(AMPAR)。此外,在重复突触
刺激,锌抑制突触外谷氨酸NMDA受体(NMDAR),并且是沿着
GPR39,一种假定的代谢型锌敏感受体,用于激活内源性大麻素信号传导,
谷氨酸释放抑制。这些影响是经验依赖,因为响亮的声音减少
突触前锌水平和取消锌抑制AMPAR,暗示锌在经验依赖性
AMPAR突触可塑性。建立一种新的内源性神经调质,在许多
兴奋性突触在整个大脑,揭示了这项工作的意义,并提出了三个问题,
兴奋性突触信号和听觉处理的基本重要性:a)什么是动力学
不同形式的锌介导的抑制,以及它们如何相互作用,并与谷氨酸
B)什么是神经传递的分子机制
突触前锌水平的潜在的持久的、活动依赖性的变化,以及它们如何与
其他已建立的可塑性机制,以及c)听觉刺激触发锌的特征是什么
体内锌的释放以及锌的释放如何影响清醒动物的自发活动和声音诱发的活动。
解决这些问题不仅对锌生物学和听力领域有重大贡献,
研究,但也将揭示一般机制,将极大的兴趣,更广泛的神经科学
社区在目标1和2中,我们将采用体外脑切片实验,并使用听觉脑干
突触作为研究锌在神经传递和可塑性中的作用的模型。在目标3中,我们将采用
在体内成像,以调查这些机制在未麻醉的听皮层处理中的作用,
小鼠
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thanos Tzounopoulos其他文献
Thanos Tzounopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thanos Tzounopoulos', 18)}}的其他基金
Cortical neuromodulatory mechanisms underlying adaptation and plasticity
适应和可塑性的皮质神经调节机制
- 批准号:
10794638 - 财政年份:2023
- 资助金额:
$ 56.82万 - 项目类别:
Synaptic, Cellular and Circuit Mechanisms of Cortical Plasticity after Cochlear Damage
耳蜗损伤后皮质可塑性的突触、细胞和电路机制
- 批准号:
10623300 - 财政年份:2021
- 资助金额:
$ 56.82万 - 项目类别:
Synaptic, Cellular and Circuit Mechanisms of Cortical Plasticity after Cochlear Damage
耳蜗损伤后皮质可塑性的突触、细胞和电路机制
- 批准号:
10416074 - 财政年份:2021
- 资助金额:
$ 56.82万 - 项目类别:
Synaptic, Cellular and Circuit Mechanisms of Cortical Plasticity after Cochlear Damage
耳蜗损伤后皮质可塑性的突触、细胞和电路机制
- 批准号:
10273218 - 财政年份:2021
- 资助金额:
$ 56.82万 - 项目类别:
Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
- 批准号:
7857728 - 财政年份:2009
- 资助金额:
$ 56.82万 - 项目类别:
Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
- 批准号:
7759859 - 财政年份:2007
- 资助金额:
$ 56.82万 - 项目类别:
Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
- 批准号:
8609018 - 财政年份:2007
- 资助金额:
$ 56.82万 - 项目类别:
Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
- 批准号:
8429374 - 财政年份:2007
- 资助金额:
$ 56.82万 - 项目类别:
Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
- 批准号:
7755033 - 财政年份:2007
- 资助金额:
$ 56.82万 - 项目类别:
Cell-specific Synaptic Plasticity in the Auditory Brainstem
听觉脑干中的细胞特异性突触可塑性
- 批准号:
7712931 - 财政年份:2007
- 资助金额:
$ 56.82万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 56.82万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 56.82万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 56.82万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 56.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 56.82万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 56.82万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 56.82万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 56.82万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 56.82万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 56.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




