Biomarker Discovery and Validation in Parkinson's Disease

帕金森病生物标志物的发现和验证

基本信息

  • 批准号:
    9269667
  • 负责人:
  • 金额:
    $ 66.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder after Alzheimer's disease. Although PD is associated with Lewy body formation in the substantia nigra and other regions of the brain, the pathologic and metabolic alterations occurring during the onset and progression of PD have not been clearly defined. Despite a critical need for a reliable diagnostic marker for PD, there is currently no such biomarker that can be used accurately in clinical practice for establishing a definitive diagnosis of PD. The difficulty of identifying reliable biomarkers can be attributed to the variability of clinical samples, low abundance of proteins that are involved in PD pathogenesis and the lack of reproducibility in validating biomarker candidates. To overcome these limitations, we propose use of a large cerebrospinal fluid (CSF) cohort with greater statistical power for true discovery and deep proteome analysis to discover PD biomarkers that are involved in PD pathogenesis, but are present at low abundance. In addition, multiplexed sample analysis by isobaric tandem mass tagging (TMT) with a common reference for data normalization will ensure robust analytical precision of quantitative proteomic data for discovery from a larger set of samples. Moreover, additional proteomic analysis of substantia nigra will be used to select those biomarkers that show differential expression in CSF as well as substantia nigra. These discovery platforms will use a bioinformatics approach to select the most plausible candidates for targeted validation studies followed by an intensive validation of the discovered biomarker candidates. To achieve these goals, we propose three aims: Specific Aim 1: To discover proteins that are differentially expressed in patients with Parkinson's disease. We plan to carry out a quantitative proteomic analysis of CSF and substantia nigra samples from patients with PD and from controls by employing TMT-based multiplexing technology. With this approach, we expect to obtain a more comprehensive coverage of a larger number of proteins quantified across the analyzed samples. Specific Aim 2: To prioritize candidates based on an integrative analysis of alterations in CSF and substantia nigra. By integrating the expression changes in CSF and substantia nigra with a network approach that takes advantage of the known biological pathways that have been described in PD, our approach should be able to select reliable PD biomarker candidates for validation by targeted PRM experiments. Specific Aim 3: To validate candidate protein biomarkers in a larger cohort using targeted parallel reaction monitoring (PRM) mass spectrometry using CSF samples from a PD cohort at Johns Hopkins. Biomarkers that are selected by selection algorithms based on these PRM experiments will finally be confirmed with blinded PDBP CSF samples. Through the approaches outlined above, we expect to discover and validate reliable PD biomarkers in a reproducible fashion.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ted M. Dawson其他文献

Molecular mediating prion-like α-synuclein fibrillation from toxic PFFs to nontoxic species
分子介导从有毒 PFF 到无毒物种的类朊病毒 α-突触核蛋白纤维颤动
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Longgang Jia;Yuqing Liu;Wenliang Wang;Ying Wang;Haiqing Liu;Fufeng Liu;Rong Chen;Valina L. Dawson;Ted M. Dawson;Fuping Lu;Lei Liu;Yanping Wang;Xiaobo Mao
  • 通讯作者:
    Xiaobo Mao
Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke
PARP 依赖性细胞死亡(Parthanatos):在神经退行性疾病和中风中的机制、调节及治疗前景
  • DOI:
    10.1016/j.bcp.2024.116174
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Liu Yang;Lauren Guttman;Valina L. Dawson;Ted M. Dawson
  • 通讯作者:
    Ted M. Dawson
α-Synuclein pathology as a target in neurodegenerative diseases
α-突触核蛋白病理作为神经退行性疾病的靶点
  • DOI:
    10.1038/s41582-024-01043-w
  • 发表时间:
    2024-11-28
  • 期刊:
  • 影响因子:
    33.100
  • 作者:
    Hyejin Park;Tae-In Kam;Valina L. Dawson;Ted M. Dawson
  • 通讯作者:
    Ted M. Dawson
Preclinical studies and transcriptome analysis in a model of Parkinson’s disease with dopaminergic ZNF746 expression
  • DOI:
    10.1186/s13024-025-00814-3
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    17.500
  • 作者:
    Ji Hun Kim;Sumin Yang;Hyojung Kim;Dang-Khoa Vo;Han-Joo Maeng;Areum Jo;Joo-Heon Shin;Joo-Ho Shin;Hyeon-Man Baek;Gum Hwa Lee;Sung-Hyun Kim;Key-Hwan Lim;Valina L. Dawson;Ted M. Dawson;Jae-Yeol Joo;Yunjong Lee
  • 通讯作者:
    Yunjong Lee
Molecular Mediation of Prion-like α-Synuclein Fibrillation from Toxic PFFs to Nontoxic Species
类朊病毒 α-突触核蛋白纤维化从有毒 PFF 到无毒物种的分子介导
  • DOI:
    10.1021/acsabm.0c00684
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Longgang Jia;Yuqing Liu;Wenliang Wang;Ying Wang;Haiqing Liu;Fufeng Liu;Rong Chen;Valina L. Dawson;Ted M. Dawson;Fuping Lu;Lei Liu;Yanping Wang;Xiaobo Mao
  • 通讯作者:
    Xiaobo Mao

Ted M. Dawson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ted M. Dawson', 18)}}的其他基金

BIOMARKER DISCOVERY AND VALIDATION IN PSP
PSP 中生物标志物的发现和验证
  • 批准号:
    9750090
  • 财政年份:
    2018
  • 资助金额:
    $ 66.04万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    8882841
  • 财政年份:
    2014
  • 资助金额:
    $ 66.04万
  • 项目类别:
Biology of Parkin and It's Role in Parkinson's Disease
帕金生物学及其在帕金森病中的作用
  • 批准号:
    8882845
  • 财政年份:
    2014
  • 资助金额:
    $ 66.04万
  • 项目类别:
Biology of Parkin and Its Role in Parkinson's Disease
帕金生物学及其在帕金森病中的作用
  • 批准号:
    8540519
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:
cell Function & Pathophysiology Project
细胞功能
  • 批准号:
    8294095
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
  • 批准号:
    9116479
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
  • 批准号:
    9143805
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
  • 批准号:
    8472291
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
  • 批准号:
    8740577
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:
Johns Hopkins Medicine Biomarker Discovery in Parkinson's Disease
约翰霍普金斯大学医学帕金森病生物标志物的发现
  • 批准号:
    8554394
  • 财政年份:
    2012
  • 资助金额:
    $ 66.04万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 66.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了