The role of energy regulation in the epithelial cell response to sepsis and the origin of multiple organ dysfuntion

能量调节在上皮细胞对脓毒症反应中的作用和多器官功能障碍的起源

基本信息

项目摘要

PROJECT ABSTRACT Severe sepsis is a syndrome estimated to affect 750,000 people in the United States and about 19 million people worldwide every year. With a rising incidence, death rates exceeding 20% and causing significant mor- bidity in survivors, sepsis is considered today a public health problem. Despite that mortality has been consist- ently associated with increasing organ dysfunction, the mechanisms by which sepsis causes multiple organ dysfunction are not well understood, and hence therapy remains reactive rather than preventive, and non- specific. Recent evidence has challenged the previous understanding of sepsis-induced organ dysfunction as being due to decreased blood flow-induced cell death by showing for example that acute kidney injury (AKI) occurs in the setting of normal or increased renal blood flow; and that it is characterized not by acute tubular necrosis or apoptosis, but rather by patchy, heterogeneous areas of tubular epithelial cell (TEC) oxidative stress and energy depletion. This paucity of apoptosis and necrosis, and the recognition that metabolic re- sponses to inflammatory injury may not only limit cell death in the acute phase but also, re-program energy regulatory pathways to determine future responses of epithelial cells, suggests that exploration of these mech- anisms represents potential therapeutic opportunities. Accordingly, the goal of this proposal is to determine the mechanisms by which the epithelial cell re-programs metabolism to adapt to inflammatory injury, and to under- stand the impact of these modifications on cell and organ function, and cell survival. The proposed research plan will be developed using cell culture and animal models in the frame of two specific aims. Aim 1 will deter- mine the role of AMPK in regulating the glycolytic and adaptive phases of the TEC response to sepsis. Aim 2 will dissect the role of mitophagy as an energy conserving response to limit TEC oxidative stress and cell death This research program will be framed in the context of a career development plan that will be described in the following pages and that is supported on three fundamental domains: Mentoring, Coursework and Research. The development of this program in the unique environment provided by the University of Pittsburgh, will allow the principal investigator (PI) to complete key training necessary to transition to independence focused on 1. The design and development of translational model systems to study sepsis induced organ dysfunction; 2. The quantification of epithelial cell energy regulatory pathways (AMPK), energy utilization and turnover, and mito- chondrial quality control processes during sepsis; and 3. Basic fluorescence and intravital microscopy tech- niques for the assessment of pathophysiologic processes in the living animal. These experiments will set the stage for future work to characterize the specific pathways linking energy regulation to organ dysfunction, and harness the possibility of manipulating these pathways to develop diagnostic, preventive and therapeutic strat- egies in a R01-funded project. Ultimately, the execution of this career development plan will uniquely position the PI as a future leader in sepsis research to improve the care of the critically ill patient. .
项目摘要 严重败血症是一种综合征,估计会影响美国750,000人,约1900万 每年都在全球。随着发病率的上升,死亡率超过20% 幸存者的婚姻,败血症被认为是一个公共卫生问题。尽管死亡率已经组成 - 与增加器官功能障碍相关,败血症引起多器官的机制 功能障碍尚不清楚,因此治疗仍然是反应性的,而不是预防性的,非 - 具体的。最近的证据挑战了先前对败血症引起的器官功能障碍的理解 由于急性肾脏损伤(AKI),由于血液流动诱导的细胞死亡减少所致 发生在正常或增加肾血流的情况下;并且它的特征不是急性管状 坏死或细胞凋亡,而是通过管状上皮细胞(TEC)氧化的片状,异质区域 压力和能量消耗。凋亡和坏死的这种稀少,以及代谢恢复的认识 发作性损伤的发起不仅可能限制急性期细胞死亡,而且还可以重新编程能量 确定上皮细胞未来反应的调节途径表明,这些机甲的探索 Anisms代表潜在的治疗机会。因此,该提议的目的是确定 上皮细胞重新编程代谢以适应炎症性损伤的机制,并 具有这些修饰对细胞和器官功能以及细胞存活的影响。拟议的研究 计划将使用两个特定目的的细胞培养和动物模型制定。 AIM 1将阻止 - 挖掘AMPK在调节TEC对败血症反应的糖酵解和适应阶段中的作用。目标2 将剖析线粒体的作用,作为限制TEC氧化应激和细胞死亡的能量响应的作用 该研究计划将在职业发展计划的背景下进行构建,该计划将在 遵循页面,并在三个基本领域得到支持:指导,课程和研究。 在匹兹堡大学提供的独特环境中,该计划的制定将允许 首席研究员(PI)要完成过渡到独立性所必需的关键培训。 研究和开发败血症诱导器官功能障碍的翻译模型系统; 2 定量上皮细胞能量调节途径(AMPK),能量利用和周转,以及MITO- 败血症期间的软骨质量控制过程; 3。基本荧光和插入显微镜技术 - 评估活动物中病理生理过程的有益机。这些实验将设置 未来工作的阶段,以表征将能量调节与器官功能障碍联系起来的特定途径,并且 利用操纵这些途径以发展诊断,预防和治疗性层的可能性 R01资助的项目中的egies。最终,该职业发展计划的执行将唯一地位 PI是败血症研究的未来领导者,以改善对重症患者的护理。 。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hernando Gomez Danies其他文献

Hernando Gomez Danies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hernando Gomez Danies', 18)}}的其他基金

A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
  • 批准号:
    10656829
  • 财政年份:
    2023
  • 资助金额:
    $ 18.65万
  • 项目类别:

相似国自然基金

RIP3/MLKL/GSDMD程序性调控坏死与炎症正反馈环路反应在急性肾损伤慢性化中的作用机制研究
  • 批准号:
    81870472
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
Gasdermin家族蛋白介导的细胞程序性坏死在急性肾衰竭中的作用
  • 批准号:
    81700596
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于光学相干成像评估移植肾脏功能研究
  • 批准号:
    61675044
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
人参皂苷Rg1联合HIF-1α基因修饰的人羊膜间充质干细胞对小鼠急性肾小管坏死模型协同治疗效果及机制探讨
  • 批准号:
    81460136
  • 批准年份:
    2014
  • 资助金额:
    47.0 万元
  • 项目类别:
    地区科学基金项目
Wnt信号通路对肾小管上皮细胞极性的影响
  • 批准号:
    30971377
  • 批准年份:
    2009
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
  • 批准号:
    10677394
  • 财政年份:
    2023
  • 资助金额:
    $ 18.65万
  • 项目类别:
Save Kidneys in Cisplatin Chemotherapy by blocking HDAC6
顺铂化疗中通过阻断 HDAC6 拯救肾脏
  • 批准号:
    10841270
  • 财政年份:
    2023
  • 资助金额:
    $ 18.65万
  • 项目类别:
Effect of High Salt Diet on Proximal Tubular Sodium Reabsorption, Metabolic Stress, and Injury
高盐饮食对近端肾小管钠重吸收、代谢应激和损伤的影响
  • 批准号:
    10908784
  • 财政年份:
    2023
  • 资助金额:
    $ 18.65万
  • 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
  • 批准号:
    10676628
  • 财政年份:
    2023
  • 资助金额:
    $ 18.65万
  • 项目类别:
Heme-mediated Mitochondrial Injury, Senescence, Acute Kidney Injury and Chronic Kidney Disease
血红素介导的线粒体损伤、衰老、急性肾损伤和慢性肾病
  • 批准号:
    10656648
  • 财政年份:
    2023
  • 资助金额:
    $ 18.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了