Effect of High Salt Diet on Proximal Tubular Sodium Reabsorption, Metabolic Stress, and Injury
高盐饮食对近端肾小管钠重吸收、代谢应激和损伤的影响
基本信息
- 批准号:10908784
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcuteAcute Renal Failure with Renal Papillary NecrosisAftercareAnimalsApicalBiological MarkersBiological ProcessBloodBlood PressureBody WeightBrush BorderBullaCarrier ProteinsChloridesChromosome 13CirculationCitric Acid CycleControl AnimalCreatinine clearance measurementDahl Hypertensive RatsDevelopmentDietDiseaseDopamineDown-RegulationEndotheliumEnzymesEquilibriumExcretory functionExhibitsFatty AcidsFemaleFibrosisGene ChipsGene ExpressionGenomicsGoalsHealthHomeostasisHumanHydroxyeicosatetraenoic AcidsHypertensionImpairmentInbred Dahl RatsInbreedingIndividualInjuryInjury to KidneyIntakeJournalsK ATPaseKidneyLimb structureLipidsMeasuresMedicineMembraneMetabolicMetabolic stressMetabolismMitochondriaModelingMolecularNa(+)-K(+)-Exchanging ATPaseNatriuresisNephronsNephrotic SyndromeNew EnglandNorwayOxidative StressOxygenPPAR alphaPathologicPathologyPerfusionPhysiologicalPlasma ProteinsPlayPopulationProcessProductionProtein ArrayProteinsProteinuriaProteomicsProtocols documentationProtonsProximal Kidney TubulesPuromycin AminonucleosideRattusReactive Oxygen SpeciesRegulationRenal Blood FlowRenal functionReninResistanceRoleSignal TransductionSodiumSodium ChlorideSodium-Hydrogen AntiporterSprague-Dawley RatsTestingThickTimeTubular formationabsorptionapical membraneblood pressure elevationcell injuryconsomicdietary saltfeedingglomerular filtrationhemodynamicshigh salt diethypertensiveinsightischemic cardiomyopathymalemitochondrial dysfunctionmouse modelnoveloxidationpodocytepressurepreventrenal damageresistant strainresponsesalt intakesalt sensitivesalt sensitive hypertensionuptakeurinary
项目摘要
(PLEASE KEEP IN WORD, DO NOT PDF)
PROJECT Summary/ABSTRACT
The mechanisms responsible for the development of salt-sensitive hypertension and renal injury are incompletely understood. It is known that excessive reabsorption of filtered sodium (Na+) by the nephron plays a primary role in the development in salt-sensitive hypertension, but the impact of proximal tubule (PT) pathology on the progression of renal damage is incompletely understood. The PT reabsorbs approximately 65% of filtered Na+ in a process that relies upon an ATP-dependent electrochemical gradient produced by basolateral Na,K-ATPase activity. Unlike salt-resistant rat models, the Dahl salt-sensitive (SS) rat model lacks the ability to downregulate PT expression of Na+ transporters and Na,K-ATPase activity when presented with high tubular Na+ resulting from a prolonged high salt diet. This results in hypertension, glomerular damage, and hyperfiltration of plasma proteins that are also reabsorbed at the PT using ATP-dependent processes. Augmented Na,K-ATPase activity would be expected to increase PT cellular metabolic and oxidative stress to meet the augmented energetic demand, ultimately resulting in observed PT pathology. A fundamental challenge with studying mechanisms regulating the progression of pathology in the SS model is that a high salt diet is central to the cascade of pathological changes observed. The goal of this study is to isolate Na+-dependent and Na+-independent causes of PT pathology on downstream Na+ handling and renal pathology. We hypothesize that PT damage importantly contributes to the progression of salt-sensitive pathology in the SS rat. This project has a single aim, to determine if PT apical blebbing augments postproximal Na+ reabsorption, tubular casting, fibrosis, and hypertension in the SS rat relative to salt-insensitive Sprague Dawley (SD) rats. Our approach to test this hypothesis will be to induce podocyte damage to cause Na+- and pressure-independent hyperfiltration and subsequent PT blebbing in SS and SD rats. Proximal and post-proximal nephron Na+ reabsorption, renal function, proteinuria, blood pressure, tubular/renal pathology, and distribution of PT Na+ transport proteins in the nephron and excreted blebs will be assessed. The proposed studies are significant because the mechanism by which enhanced sodium uptake leads to the progression of observed renal pathology in SS rats remains unclear. The results of these studies will provide novel insight into the contribution of PT damage to salt-sensitive hypertension.
(请保持文字,不要PDF)
项目摘要/摘要
盐敏感性高血压和肾损伤的发生机制尚不完全清楚。众所周知,肾单位对滤过钠(Na+)的过度重吸收在盐敏感性高血压的发展中起主要作用,但近端小管(PT)病理对肾损害进展的影响尚不完全清楚。PT在依赖于由基底外侧Na,K-ATP酶活性产生的ATP依赖性电化学梯度的过程中重吸收约65%的过滤Na+。与耐盐大鼠模型不同,Dahl盐敏感(SS)大鼠模型在长期高盐饮食导致肾小管Na+升高时,缺乏下调Na+转运蛋白PT表达和Na,K-ATP酶活性的能力。这导致高血压、肾小球损伤和血浆蛋白的超滤,这些血浆蛋白也使用ATP依赖性过程在PT处被重吸收。预计增加的Na,K-ATP酶活性将增加PT细胞代谢和氧化应激,以满足增加的能量需求,最终导致观察到的PT病理学。在SS模型中研究调节病理学进展的机制的一个基本挑战是,高盐饮食是观察到的病理学变化级联的核心。本研究的目的是分离下游Na+处理和肾脏病理的PT病理的Na+依赖性和Na+非依赖性原因。我们假设PT损伤对SS大鼠盐敏感性病理学的进展有重要贡献。本项目的目的只有一个,即确定PT顶端起泡是否增加SS大鼠相对于盐不敏感Sprague道利(SD)大鼠的近端后Na+重吸收、肾小管铸型、纤维化和高血压。我们检验这一假设的方法是诱导足细胞损伤,导致SS和SD大鼠的Na+和压力非依赖性超滤和随后的PT起泡。将评估近端和近端后肾单位Na+重吸收、肾功能、蛋白尿、血压、肾小管/肾脏病理学以及PT Na+转运蛋白在肾单位和排泄泡中的分布。拟定的研究具有重要意义,因为钠摄取增加导致SS大鼠中观察到的肾脏病理学进展的机制尚不清楚。这些研究的结果将为PT损伤对盐敏感性高血压的贡献提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison J Kriegel其他文献
Alison J Kriegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison J Kriegel', 18)}}的其他基金
miRNA Mediated Cross-Talk in CRS4: The Role of the miR-21-5p/PPAR-Alpha Pathway
miRNA 介导的 CRS4 交叉对话:miR-21-5p/PPAR-Alpha 通路的作用
- 批准号:
9918443 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
miRNA Mediated Cross-Talk in CRS4: The Role of the miR-21-5p/PPAR-Alpha Pathway
miRNA 介导的 CRS4 交叉对话:miR-21-5p/PPAR-Alpha 通路的作用
- 批准号:
9278288 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Operating Grants