Center for Modeling Tumor Cell Migration Mechanics
肿瘤细胞迁移机制建模中心
基本信息
- 批准号:9337072
- 负责人:
- 金额:$ 19.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-17 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAttentionAutomobile DrivingBerylliumBiomechanicsBiomedical EngineeringBiomedical TechnologyCancer CenterCancer EtiologyCancer Immunology ScienceCancer PatientCarcinomaCell ProliferationCell divisionCell modelCellsCessation of lifeCharacteristicsChemistryCitiesClinicClinicalClinical TrialsComplexComputer SimulationDiseaseDisease ProgressionDrug resistanceEducation and OutreachElementsEngineeringEnvironmentFundingFutureGeneticGenetic ScreeningGenome engineeringGeographic LocationsGoalsHumanImmuneImmune responseIn VitroInflammationInstitutesInvestmentsLeadMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of pancreasMathematicsMayo Clinic Cancer CenterMechanicsMicrofluidicsModelingMolecularMolecular GeneticsMolecular MotorsMotorMusMutateMutationNeoplasm MetastasisOncogenesOncologistPathway interactionsPhenotypePhysicsPremalignantProcessProteinsPublishingScienceSideSignal PathwayStagingSuppressor-Effector T-LymphocytesSystemT-LymphocyteTestingThe Cancer Genome AtlasTherapeuticTimeTissue EngineeringTractionTumor BiologyTumor Cell MigrationTumor SubtypeTumor-DerivedTwin Multiple BirthWood materialWorkabstractingactionable mutationbasebiomathematicscancer cellcancer geneticscancer genomecancer typecell behaviorcell motilityclinically relevantdesignextracellulargene discoverygene therapygenetic approachgenome sequencinghuman diseasein vivomacrophagemicrosystemsmigrationmolecular mechanicsmultidisciplinaryneoplastic cellnew therapeutic targetnovel therapeutic interventiononcologypatient stratificationresearch studyreverse geneticssuccesstreatment strategytumortumor microenvironmenttumor progressionunpublished works
项目摘要
Abstract
At their most fundamental level, cancers are initiated by genetic alterations that drive hyperactive cell division
and cell migration. A common therapeutic strategy has been to target the proteins in the often-mutated
signaling pathways that regulate cell proliferation. However, so far this strategy has achieved only limited
success despite large public and private investment, which is likely due to functional redundancies in signaling
pathways that give multiple avenues for the emergence of drug-resistance. An alternative strategy, which
defines the organizing framework of our Center, is to directly target the internal or external mechanical
machinery or structural elements that drive cell migration. As it is these elements that serve as the most
downstream convergence point of the upstream genetic alterations, disruption of these critical elements
provides viable, clinically-relevant targets. Since cell migration is a common feature of high-grade cancer, and
invasion and metastasis are the primary cause of cancer related death, our Center will focus on understanding
the fundamental mechanics and chemistry of how cells generate forces to move through complex and
mechanically challenging tumor microenvironments. By focusing directly on the “nuts and bolts” of cell
migration, we will be targeting the most vital and non-redundant part of the system. Specifically, we propose
integrated modeling and experiments to investigate the molecular mechanics of cell migration and how the
tumor microenvironment regulates disease progression as a function of the underlying carcinoma genetics. We
will experimentally test our computational cell migration simulator, v1.0 (CMS1.0) for the mechanical dynamics
of cell migration that will ultimately be used to: 1) identify novel drug targets/target combinations in silico, 2)
define molecular mechanical subtypes of tumors for patient stratification, 3) guide the engineering of in vitro
microsystems and in vivo animal models to better mimic the human disease, and 4) simulate tumor
progression under different potential treatment strategies. Finally, we will develop a simulator-driven reverse
genetics approach to elucidate the functional mechanical consequences of driver mutations and seek to
manipulate the physical characteristics of a tumor to simultaneously bias against immune suppressor cells and
promote the antitumor immune response.
摘要
在最基本的层面上,癌症是由基因改变引发的,这些基因改变驱动了过度活跃的细胞分裂。
和细胞迁移。一种常见的治疗策略是靶向经常突变的蛋白质,
调节细胞增殖的信号通路。然而,到目前为止,这一战略只取得了有限的成就。
尽管有大量的公共和私人投资,但仍取得了成功,这可能是由于信号方面的功能冗余
这些途径为耐药性的出现提供了多种途径。另一种策略,
定义了我们中心的组织框架,是直接针对内部或外部的机械
驱动细胞迁移的机械或结构元件。因为正是这些元素
上游遗传改变的下游汇合点,这些关键要素的破坏
提供了可行的临床相关靶点由于细胞迁移是高级别癌症的共同特征,
侵袭和转移是癌症相关死亡的主要原因,我们中心将重点了解
细胞如何产生力以通过复杂的、
机械挑战肿瘤微环境。通过直接关注细胞的“螺母和螺栓”,
在迁移方面,我们将针对系统中最重要和非冗余的部分。具体来说,我们建议
综合建模和实验,以研究细胞迁移的分子力学以及细胞迁移的分子机制。
肿瘤微环境作为潜在的癌遗传学的功能调节疾病进展。我们
将通过实验测试我们的计算细胞迁移模拟器v1.0(CMS1.0)的机械动力学
最终将用于:1)通过计算机识别新的药物靶点/靶点组合,2)
定义肿瘤的分子力学亚型,用于患者分层,3)指导体外工程,
微系统和体内动物模型,以更好地模拟人类疾病,以及4)模拟肿瘤
在不同的潜在治疗策略下进展。最后,我们将开发一个模拟器驱动的反向
遗传学方法来阐明驱动突变的功能性机械后果,并寻求
操纵肿瘤的物理特性以同时偏向免疫抑制细胞,
促进抗肿瘤免疫应答。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID ANDREW LARGAESPADA其他文献
DAVID ANDREW LARGAESPADA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID ANDREW LARGAESPADA', 18)}}的其他基金
Integrated Immune Engineering for Poor Prognosis Cancers
综合免疫工程治疗预后不良的癌症
- 批准号:
10700921 - 财政年份:2021
- 资助金额:
$ 19.01万 - 项目类别:
Integrated Immune Engineering for Poor Prognosis Cancers
综合免疫工程治疗预后不良的癌症
- 批准号:
10270392 - 财政年份:2021
- 资助金额:
$ 19.01万 - 项目类别:
Uncovering treatment targets for peripheral nerve sheath tumor progression in NF1
发现 NF1 周围神经鞘瘤进展的治疗靶点
- 批准号:
10439480 - 财政年份:2020
- 资助金额:
$ 19.01万 - 项目类别:
Uncovering treatment targets for peripheral nerve sheath tumor progression in NF1
发现 NF1 周围神经鞘瘤进展的治疗靶点
- 批准号:
10653687 - 财政年份:2020
- 资助金额:
$ 19.01万 - 项目类别:
Uncovering treatment targets for peripheral nerve sheath tumor progression in NF1
发现 NF1 周围神经鞘瘤进展的治疗靶点
- 批准号:
10247078 - 财政年份:2020
- 资助金额:
$ 19.01万 - 项目类别:
Recurrent Tumor-Specific Alternately Processed Transcripts as a Source of Neoantigens for NF1-associated Malignant Peripheral Nerve Sheath Tumor Immunoprevention
复发性肿瘤特异性交替加工转录本作为 NF1 相关恶性周围神经鞘肿瘤免疫预防的新抗原来源
- 批准号:
10488079 - 财政年份:2019
- 资助金额:
$ 19.01万 - 项目类别:
Recurrent Tumor-Specific Alternately Processed Transcripts as a Source of Neoantigens for NF1-associated Malignant Peripheral Nerve Sheath Tumor Immunoprevention
复发性肿瘤特异性交替加工转录本作为 NF1 相关恶性周围神经鞘肿瘤免疫预防的新抗原来源
- 批准号:
10465297 - 财政年份:2019
- 资助金额:
$ 19.01万 - 项目类别:
Recurrent Tumor-Specific Alternately Processed Transcripts as a Source of Neoantigens for NF1-associated Malignant Peripheral Nerve Sheath Tumor Immunoprevention
复发性肿瘤特异性交替加工转录本作为 NF1 相关恶性周围神经鞘肿瘤免疫预防的新抗原来源
- 批准号:
10023258 - 财政年份:2019
- 资助金额:
$ 19.01万 - 项目类别:
Recurrent Tumor-Specific Alternately Processed Transcripts as a Source of Neoantigens for NF1-associated Malignant Peripheral Nerve Sheath Tumor Immunoprevention
复发性肿瘤特异性交替加工转录本作为 NF1 相关恶性周围神经鞘肿瘤免疫预防的新抗原来源
- 批准号:
10662510 - 财政年份:2019
- 资助金额:
$ 19.01万 - 项目类别:
Center for Modeling Tumor Cell Migration Mechanics
肿瘤细胞迁移机制建模中心
- 批准号:
9901832 - 财政年份:2016
- 资助金额:
$ 19.01万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 19.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists