Towards the automation of MR spectroscopic imaging in patients with glioblashoma
胶质母细胞瘤患者磁共振波谱成像的自动化
基本信息
- 批准号:9312109
- 负责人:
- 金额:$ 4.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-24 至 2021-06-23
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdultAlgorithmic SoftwareAlgorithmsAnatomyAutomationBenchmarkingBrainBrain NeoplasmsCellsClinicalClinical DataClinical ManagementClinical TrialsComplementComputational TechniqueComputer softwareConsensusContrast MediaDataData AnalysesData SetDatabasesDetectionDiagnosisDiagnosticDiffuseDiffusionDiseaseEffectivenessEnrollmentExcisionGaussian modelGlioblastomaGliomaGoalsGoldHigh Performance ComputingHistologicHistologyHourImageInfiltrationInterventionKnowledgeLearningLeast-Squares AnalysisMachine LearningMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMalignant NeoplasmsMalignant neoplasm of brainMapsMeasuresMedicalMedical ImagingMetabolicMetabolismMethodsModalityModelingMonitorMorphologic artifactsNatureNeoplasmsOncologistOnline SystemsOutcomePathologicPatientsPerformancePhysiciansPlayPopulationPrimary Brain NeoplasmsRadiationRadiation DosageRadiation therapyReaderRecurrenceRoleSchemeSeedsSignal TransductionSoftware FrameworkT2 weighted imagingTechniquesTimeTissuesTrainingTranslatingUniversitiesVariantWorkbasechemotherapyclinical applicationclinical imagingcontrast enhanceddosageexpectationgenomic dataimage processingimaging modalityimprovedlearning networkmagnetic resonance spectroscopic imagingmetabolic imagingmolecular imagingmultimodalityneoplasticneoplastic cellneovascularizationneovasculaturenoveloutcome forecastpersonalized diagnosticspersonalized medicineprecision medicinepredictive modelingprognosticquantitative imagingresponsesoftware developmentspectroscopic dataspectroscopic imagingsuccesssyntaxtooltreatment planningtumortumor growthwhite matter
项目摘要
Glioblastoma is the most common adult primary brain tumor and is highly aggressive in its disease course.
Despite advances in neurosurgical resection, radiation targeting, and chemotherapy, the prognosis remains
grim with a median survival of just 15 months. The effectiveness of current radiation therapy strategies is
severely limited by shortcomings in the imaging modalities used to develop treatment plans. Current radiation
therapy planning is mainly based on contrast-enhanced T1-weighted MRI, which identifies high grade tumors
that are immediately associated with leaky neovasculature. Although it is an excellent diagnostic tool to identify
high grade from low grade tumors, it is unable to signal occult infiltration beyond the core of the tumor. Though
many believe GBM to be an incurable disease, we believe we have identified a method for optimizing tumor
targeting that will increase the effectiveness of radiation therapy. A significant component of the current
problem in GBM therapy is the lack of treatment for non-enhancing regions that are significantly infiltrated by
neoplastic glioma cells without neovascularization. This untreated population undoubtedly leads to early
recurrence. The proposed study addresses an important step toward translating an advanced quantitative
imaging modality that complements the conventional imaging that is capable of reliably revealing glioma-
infiltrated regions for precise, personalized treatment targeting. Proton spectroscopic magnetic resonance
imaging (sMRI) is an alternative modality able to identify endogenous metabolism within tissue without the
need for exogenous contrast, and has been shown to identify the metabolic abnormalities associated with
tumor beyond the regions identified by T1-weighted MRI. The clinical integration of sMRI in patient
management has been limited due to the computational challenges of analysis of sMRI data. Two key hurdles
to be overcome are the insufficiency of filters to remove image artifacts and the necessity of quantification of
metabolic levels relative to a patient's baseline metabolism. As a result, sMRI processing requires skilled user
intervention and many hours of computational and user time. To automate this pipeline and provide clinically
useful information to oncologists, we seek to develop a software framework for the automated and expedient
processing of sMRI for use in radiation therapy planning. We will use novel advances in the fields of high
performance computing and deep learning, an approach to computation that has shattered benchmarks in
many medical and non-medical problems. Specifically, we will develop filters for removing artifacts, algorithms
for personalized diagnosis of tumor infiltration, and explore deep learning as a method to synthesize sMRI data
with anatomical and clinical metrics in a fully automated fashion. Success in the proposed work will produce a
“scanner-to-clinician” platform for quantitative, expedient, and objective analysis methods to integrate sMRI
into the clinical radiation therapy planning paradigm. Ultimately, we believe this additional modality in the
physician's tool belt will lead to better outcomes in patients suffering from this debilitating disease.
胶质母细胞瘤是最常见的成人原发性脑肿瘤,其病程具有高度侵袭性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saumya Gurbani其他文献
Saumya Gurbani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saumya Gurbani', 18)}}的其他基金
Towards the automation of MR spectroscopic imaging in patients with glioblashoma
胶质母细胞瘤患者磁共振波谱成像的自动化
- 批准号:
9926827 - 财政年份:2016
- 资助金额:
$ 4.9万 - 项目类别:
Towards the automation of MR spectroscopic imaging in patients with glioblashoma
胶质母细胞瘤患者磁共振波谱成像的自动化
- 批准号:
9191930 - 财政年份:2016
- 资助金额:
$ 4.9万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant














{{item.name}}会员




