Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
基本信息
- 批准号:9250229
- 负责人:
- 金额:$ 34.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adenovirus VectorAffectAnatomyAnimalsBinding ProteinsBlood VesselsBrainBrain DrainsBrain NeoplasmsCaliberCellsClinicalClinical TreatmentClinical TrialsDataDiagnosisDiffuseDown-RegulationEdemaElectronsFDA approvedFLT3LG geneFunctional disorderGalectin 1GliomaGrowthHRAS geneHumanHuman CharacteristicsImmuneImmune responseIn VitroIndolentInfiltrationInstitutional Review BoardsInvestigational TherapiesKnowledgeLaboratoriesLeadLentivirus VectorLymphMalignant NeoplasmsMediatingMichiganMicroscopyMitosisMolecularObstructionOperative Surgical ProceduresPathway interactionsPatient RecruitmentsPatientsPatternPhasePlatelet-Derived Growth FactorPolysaccharidesPositioning AttributeRadiation therapyRecurrenceResearchResistanceRodentStem cellsSymptomsT cell responseTK GeneTestingTherapeuticTranslatingTravelTumor Cell InvasionUniversitiesWorkbrain parenchymabrain tissuebrain volumecerebral atrophycerebral microvasculaturechemotherapycytotoxicgene therapygene therapy clinical trialin vivoinhibitor/antagonistkillingsknock-downmigrationneoplastic cellnovelnovel therapeuticspublic health relevancesmall hairpin RNAtranslational clinical trialtreatment strategytumortumor growthtumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): High grade gliomas are uniformly lethal, and resistant to surgery, chemotherapy and radiotherapy. The precise cellular and molecular mechanisms by which glioma cells disperse through the brain and grow to form macroscopic symptomatic tumor masses remains poorly understood. Herein we propose to test novel cellular, molecular and mechanistic hypotheses concerning glioma growth, and how to translate this knowledge into new anti-glioma therapeutics. Preliminary work from my laboratory, using confocal, electron and multiphoton microscopy has shown that glioma cells and human glioma stem cells disperse through the brain in vivo by traveling preferentially along the perivascular compartment, a potential migration network surrounding the brain microvasculature. As glioma cells move throughout the perivascular network they dislodge glial endfeet from blood vessels and compromise adjacent brain tissue; this is later replaced by tumor cells. We have also generated preliminary data that a glycan binding protein, galectin-1, is essential for this growth mechanism.
Down regulation of galectin-1 abolishes glioma growth in the brain in vivo, without affecting growth in vitro. These new data have several clinical consequences: (i) lymph drains from the brain through the perivascular compartment; its obstruction by gliomas would contribute to glioma-induced edema; (ii) human glioma tumors grow to large size before causing symptoms; glioma cell replacement of atrophied brain tissue could explain protracted and indolent tumor growth, and the delayed changes in total brain volume; (iii) inhibition of galectin-1 could represent a novel treatment of human gliomas. This proposal will (I) test the hypothesis that rodent and human glioma cells, and glioma stem cells grow preferentially along the perivascular space; (II) test the hypothesis that galectin-1 mediates glioma perivascular invasion and growth, and that inhibition of galectin-1 can be used as a novel therapeutic strategy; and (III) test the hypothesis that inhibition of galectin-1 will enhance specific anti-glioma immune responses. By progressing from glioma pathophysiology to molecular mechanisms of glioma migration to experimental therapeutics, we aim for our work to lead to novel early phase clinical translational trials for the treatment of human gliomas. Of note, our first clinical trial for gene therapy of human gliomas is approaching the start of patient recruitment (it was approved by FDA on 4/7/11 [IND 14574] and very recently by the University of Michigan IBC and IRB). Therefore, our laboratory is in a strong and realistic position to guide our research towards the translational implementation of novel clinical trials for this currently deadly human cancer.
描述(由申请人提供):高级别胶质瘤是一致致命的,对手术、化疗和放疗有抵抗力。神经胶质瘤细胞在脑内扩散并生长形成肉眼可见的有症状的肿瘤块的确切细胞和分子机制仍然知之甚少。在这里,我们提出测试新的细胞,分子和机制的假设胶质瘤生长,以及如何将这些知识转化为新的抗胶质瘤治疗。从我的实验室的初步工作,使用共聚焦,电子和多光子显微镜已经表明,神经胶质瘤细胞和人类神经胶质瘤干细胞分散在体内通过移动优先沿着血管周围的隔间,一个潜在的迁移网络周围的大脑微血管。当神经胶质瘤细胞在血管周围网络中移动时,它们会将神经胶质末足从血管中移出并损害邻近的脑组织;这后来被肿瘤细胞取代。我们还产生了初步的数据,聚糖结合蛋白,半乳糖凝集素-1,是必不可少的这种生长机制。
半乳糖凝集素-1的下调在体内消除脑中的胶质瘤生长,而不影响体外生长。这些新的数据有几个临床后果:(i)淋巴液从大脑通过血管周围区室引流;其被胶质瘤阻塞将有助于胶质瘤诱导的水肿;(ii)人类胶质瘤肿瘤在引起症状之前生长到大尺寸;萎缩的脑组织的胶质瘤细胞替代可以解释肿瘤生长的延迟和惰性,以及总脑体积的延迟变化;(iii)半乳糖凝集素-1的抑制可以代表人类神经胶质瘤的新治疗。该提议将(I)检验啮齿动物和人类神经胶质瘤细胞以及神经胶质瘤干细胞优先沿血管周围空间沿着生长的假设;(II)检验半乳糖凝集素-1介导神经胶质瘤血管周围侵袭和生长的假设,以及半乳糖凝集素-1的抑制可用作新的治疗策略的假设;以及(III)检验半乳糖凝集素-1的抑制将增强特异性抗神经胶质瘤免疫应答的假设。通过从胶质瘤病理生理学到胶质瘤迁移的分子机制再到实验治疗学的进展,我们的目标是为治疗人类胶质瘤提供新的早期临床转化试验。值得注意的是,我们的第一项人类神经胶质瘤基因治疗临床试验即将开始招募患者(于2011年4月7日获得FDA批准[IND 14574],最近获得密歇根大学IBC和IRB批准)。因此,我们的实验室处于一个强大而现实的地位,可以指导我们的研究对这种目前致命的人类癌症进行新型临床试验的转化实施。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro R Lowenstein其他文献
Combined cytotoxic and immune-stimulatory gene therapy for primary adult high-grade glioma: a phase 1, first-in-human trial
原发性成人高级别胶质瘤的联合细胞毒性和免疫刺激基因治疗:一项 1 期、首次人体试验
- DOI:
10.1016/s1470-2045(23)00347-9 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:35.900
- 作者:
Yoshie Umemura;Daniel Orringer;Larry Junck;Maria L Varela;Molly E J West;Syed M Faisal;Andrea Comba;Jason Heth;Oren Sagher;Denise Leung;Aaron Mammoser;Shawn Hervey-Jumper;Daniel Zamler;Viveka N Yadav;Patrick Dunn;Wajd Al-Holou;Todd Hollon;Michelle M Kim;Daniel R Wahl;Sandra Camelo-Piragua;Pedro R Lowenstein - 通讯作者:
Pedro R Lowenstein
Crossing the Rubicon
破釜沉舟
- DOI:
10.1038/nbt0109-42 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:41.700
- 作者:
Pedro R Lowenstein - 通讯作者:
Pedro R Lowenstein
Pedro R Lowenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro R Lowenstein', 18)}}的其他基金
Role of the collagen receptor LAIR-1 in glioma progression and the tumor immune microenvironment
胶原蛋白受体LAIR-1在神经胶质瘤进展和肿瘤免疫微环境中的作用
- 批准号:
10462939 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
Role of the collagen receptor LAIR-1 in glioma progression and the tumor immune microenvironment
胶原蛋白受体LAIR-1在神经胶质瘤进展和肿瘤免疫微环境中的作用
- 批准号:
10581659 - 财政年份:2022
- 资助金额:
$ 34.02万 - 项目类别:
The role of collagen and its signaling mechanisms in glioma progression and invasion.
胶原蛋白及其信号传导机制在神经胶质瘤进展和侵袭中的作用。
- 批准号:
10539332 - 财政年份:2021
- 资助金额:
$ 34.02万 - 项目类别:
The role of collagen and its signaling mechanisms in glioma progression and invasion.
胶原蛋白及其信号传导机制在神经胶质瘤进展和侵袭中的作用。
- 批准号:
10387976 - 财政年份:2021
- 资助金额:
$ 34.02万 - 项目类别:
Neuroimmunology of Malignant Brain Tumors: Innate Mechanisms
恶性脑肿瘤的神经免疫学:先天机制
- 批准号:
9215708 - 财政年份:2016
- 资助金额:
$ 34.02万 - 项目类别:
Neuroimmunology of Malignant Brain Tumors: Innate Mechanisms
恶性脑肿瘤的神经免疫学:先天机制
- 批准号:
9115388 - 财政年份:2016
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
8883736 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
9039671 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Mechanisms of glioma growth and invasion novel therapeutic strategies
神经胶质瘤生长和侵袭的机制新的治疗策略
- 批准号:
8480082 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
Inhibiting glioma invasion using targeted nanoparticles
使用靶向纳米粒子抑制神经胶质瘤侵袭
- 批准号:
8573433 - 财政年份:2013
- 资助金额:
$ 34.02万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 34.02万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 34.02万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 34.02万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 34.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




