Aiding Decision-Making and Trial Design using Multivariate Network Meta-Analysis
使用多元网络元分析辅助决策和试验设计
基本信息
- 批准号:9473144
- 负责人:
- 金额:$ 4.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAdultAmerican Medical AssociationAntidepressive AgentsCase StudyCharacteristicsClinicalClinical TrialsClinical Trials DesignComplexComputer softwareDataData SetDecision MakingDevelopmentDisciplineElderlyEnvironmentFutureGenerationsGoalsIndividualInformation NetworksInterventionJournalsMajor Depressive DisorderMarkov ChainsMarkov chain Monte Carlo methodologyMental HealthMental disordersMeta-AnalysisMethodologyMethodsModelingNational Institute of Mental HealthOutcomePerformancePublic HealthRandomized Controlled TrialsReportingResearchResearch Domain CriteriaResearch PersonnelSample SizeSpecific qualifier valueStatistical MethodsStructureTestingUnited States Food and Drug Administrationarmbasedemographicsdesigneffective therapyflexibilityimprovedinnovationnovelpractical applicationpublic health relevancesimulationsoftware developmentsystematic reviewtooltreatment effecttrial design
项目摘要
Systematic reviews of treatments for mental health disorders should be exploited in order to obtain accurate
information about efficacy of current interventions, and to use existing data to plan future clinical trials. Most
systematic reviews result a graphical networks of multivariate, multi-arm data, often with up to 50% missing
outcomes. Missing clinical trial outcomes are frequently a result of outcome reporting bias (ORB), in which
outcomes are unreported based on observed level of significance. Such bias causes pooled meta-analytic
effect sizes to be biased. To obtain unbiased and precise network meta-analytic effect sizes, networks should
be jointly analyzed using a multivariate network meta-analytic (MNMA) framework, which has not yet been
proposed. Under a Bayesian paradigm powered by Markov chain Monte Carlo tools, the methods described in
this proposal will exploit outcome correlation and mitigate effects of ORB via the development of the MNMA
model, resulting in less biased and more precise pairwise estimates of treatment effects (even for treatments
that have been weakly or never-compared). Based on these results, predictive distributions will be used to
inform operating characteristics of new clinical trials.
Goals: Multivariate NMA will be developed and apply it to 3 case studies: systematic reviews of randomized
controlled trials of second-generation anti-depressants for the treatment of adult, adolescent, and older adult
major depressive disorder, respectively, for which outcomes have been already shown to be subject to
reporting bias. Comparisons with univariate NMA methods will be made. A methodology for future trial design
will be developed utilizing Bayesian predictive inference informed by the multivariate network. This approach
would refine power and sample size calculations resulting in optimally-powered and more efficient trials for
weakly- or never-tested treatments. Software will be completely generalizable to networks arising from all
clinical disciplines and will be disseminated freely.
应利用对精神健康障碍治疗的系统评价,
关于当前干预措施的有效性的信息,并使用现有数据来规划未来的临床试验。最
系统性综述产生了多变量、多组数据的图形网络,通常缺失率高达50
结果。临床试验结局缺失通常是结局报告偏倚(ORB)的结果,其中
根据观察到的显著性水平,未报告结局。这种偏倚导致汇总荟萃分析
效应大小有偏差。为了获得无偏和精确的网络荟萃分析效应量,网络应该
使用多变量网络元分析(MNMA)框架进行联合分析,该框架尚未被
提出了在由马尔可夫链蒙特卡罗工具提供动力的贝叶斯范例下,
该建议将利用结果相关性,并通过发展多国军事行动来减轻ORB的影响
模型,导致治疗效应的偏倚更小且更精确的成对估计(即使对于治疗
(不太清楚或不太清楚)。基于这些结果,预测分布将用于
告知新临床试验的操作特征。
目标:将开发多变量NMA,并将其应用于3项病例研究:随机化的系统性综述
第二代抗抑郁药治疗成人、青少年和老年人的对照试验
严重抑郁症,分别,其结果已被证明是受
报告偏倚。将与单变量NMA方法进行比较。未来试验设计的方法
将开发利用贝叶斯预测推理告知多元网络。这种方法
将完善功效和样本量计算,从而获得最佳功效和更有效的试验,
弱-或从未测试过的治疗。软件将完全推广到网络所产生的所有
临床学科并将免费传播。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multivariate network meta-analysis to mitigate the effects of outcome reporting bias.
- DOI:10.1002/sim.7815
- 发表时间:2018-09-30
- 期刊:
- 影响因子:2
- 作者:Hwang H;DeSantis SM
- 通讯作者:DeSantis SM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stacia DeSantis其他文献
Stacia DeSantis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stacia DeSantis', 18)}}的其他基金
2/2 Trauma Resuscitation with Group O Whole Blood or Products (TROOP)
2/2 使用 O 组全血或产品进行创伤复苏 (TROOP)
- 批准号:
10449778 - 财政年份:2022
- 资助金额:
$ 4.62万 - 项目类别:
2/2 Trauma Resuscitation with Group O Whole Blood or Products (TROOP)
2/2 使用 O 组全血或产品进行创伤复苏 (TROOP)
- 批准号:
10707055 - 财政年份:2022
- 资助金额:
$ 4.62万 - 项目类别:
Aiding Decision-Making and Trial Design using Multivariate Network Meta-Analysis
使用多元网络荟萃分析辅助决策和试验设计
- 批准号:
9243340 - 财政年份:2016
- 资助金额:
$ 4.62万 - 项目类别:
相似海外基金
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
- 批准号:
480840 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
- 批准号:
10678157 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
- 批准号:
10744412 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
- 批准号:
23K07305 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
- 批准号:
23H02874 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
- 批准号:
10756652 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
- 批准号:
10730872 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
- 批准号:
10650648 - 财政年份:2023
- 资助金额:
$ 4.62万 - 项目类别:














{{item.name}}会员




