Aiding Decision-Making and Trial Design using Multivariate Network Meta-Analysis

使用多元网络荟萃分析辅助决策和试验设计

基本信息

项目摘要

Systematic reviews of treatments for mental health disorders should be exploited in order to obtain accurate information about efficacy of current interventions, and to use existing data to plan future clinical trials. Most systematic reviews result a graphical networks of multivariate, multi-arm data, often with up to 50% missing outcomes. Missing clinical trial outcomes are frequently a result of outcome reporting bias (ORB), in which outcomes are unreported based on observed level of significance. Such bias causes pooled meta-analytic effect sizes to be biased. To obtain unbiased and precise network meta-analytic effect sizes, networks should be jointly analyzed using a multivariate network meta-analytic (MNMA) framework, which has not yet been proposed. Under a Bayesian paradigm powered by Markov chain Monte Carlo tools, the methods described in this proposal will exploit outcome correlation and mitigate effects of ORB via the development of the MNMA model, resulting in less biased and more precise pairwise estimates of treatment effects (even for treatments that have been weakly or never-compared). Based on these results, predictive distributions will be used to inform operating characteristics of new clinical trials. Goals: Multivariate NMA will be developed and apply it to 3 case studies: systematic reviews of randomized controlled trials of second-generation anti-depressants for the treatment of adult, adolescent, and older adult major depressive disorder, respectively, for which outcomes have been already shown to be subject to reporting bias. Comparisons with univariate NMA methods will be made. A methodology for future trial design will be developed utilizing Bayesian predictive inference informed by the multivariate network. This approach would refine power and sample size calculations resulting in optimally-powered and more efficient trials for weakly- or never-tested treatments. Software will be completely generalizable to networks arising from all clinical disciplines and will be disseminated freely.
应该利用对精神健康障碍治疗的系统评价,以获得准确的 关于当前干预措施有效性的信息,并使用现有数据来计划未来的临床试验。多数 系统审查的结果是多变量、多臂数据的图形网络,通常有高达50%的缺失 结果。丢失临床试验结果通常是结果报告偏差(ORB)的结果,在这种情况下 根据观察到的重要程度,未报告结果。这种偏见导致了集合的元分析 要偏置的效果大小。为了获得公正和准确的网络元分析效应大小,网络应该 使用多元网络元分析(MNMA)框架进行联合分析,该框架尚未 建议。在马尔科夫链蒙特卡罗工具支持的贝叶斯范式下, 这一建议将利用结果相关性,并通过制定MNMA来减轻ORB的影响 模型,使得对治疗效果的两两估计(即使对于治疗也是如此)的偏差更小、更精确 那些被弱化或从未被比较过的国家)。基于这些结果,预测分布将被用于 告知新的临床试验的操作特点。 目标:将发展多变量NMA并将其应用于3个案例研究:随机对照的系统评价 第二代抗抑郁药治疗成人、青少年和老年人的对照试验 严重的抑郁障碍,其结果已经被证明受到 报道存在偏见。将与单变量NMA方法进行比较。未来试验设计的方法学 将利用由多变量网络通知的贝叶斯预测推理来开发。这种方法 将改进功率和样本量计算,从而实现最佳功率和更有效的试验 弱测试或从未测试过的治疗方法。软件将完全通用化到所有网络中 临床学科并将免费传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stacia DeSantis其他文献

Stacia DeSantis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stacia DeSantis', 18)}}的其他基金

2/2 Trauma Resuscitation with Group O Whole Blood or Products (TROOP)
2/2 使用 O 组全血或产品进行创伤复苏 (TROOP)
  • 批准号:
    10449778
  • 财政年份:
    2022
  • 资助金额:
    $ 20.39万
  • 项目类别:
2/2 Trauma Resuscitation with Group O Whole Blood or Products (TROOP)
2/2 使用 O 组全血或产品进行创伤复苏 (TROOP)
  • 批准号:
    10707055
  • 财政年份:
    2022
  • 资助金额:
    $ 20.39万
  • 项目类别:
Aiding Decision-Making and Trial Design using Multivariate Network Meta-Analysis
使用多元网络元分析辅助决策和试验设计
  • 批准号:
    9473144
  • 财政年份:
    2017
  • 资助金额:
    $ 20.39万
  • 项目类别:

相似海外基金

Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
  • 批准号:
    10755168
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
  • 批准号:
    480840
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
    Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
  • 批准号:
    10678157
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
  • 批准号:
    10744412
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
  • 批准号:
    23K07305
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
  • 批准号:
    23H02874
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
  • 批准号:
    10756652
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
  • 批准号:
    10730872
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
  • 批准号:
    10650648
  • 财政年份:
    2023
  • 资助金额:
    $ 20.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了