Investigating Patterns of Cell Interactions During Epithelial Folding

研究上皮折叠过程中细胞相互作用的模式

基本信息

项目摘要

Correct tissue shape is essential for proper tissue function and morphogenetic dysregulation results in many common congenital disorders. Yet, how groups of thousands or even hundreds of cells coordinate to yield stereotypic shape change through large-scale movements is still poorly understood. One way for cells to interact is through mechanical coupling. In fact, largescale networks of actomyosin connections between cells span developing tissues across various model organisms. The highly reproducible developmental program and powerful genetic tool-kit of Drosophila makes the Drosophila ventral furrow an ideal system for studying such networks. During furrow formation cells coordinate pulsed constrictions to yield tissue-wide bending. The tissue possesses a dynamic myosin network which fully forms prior to folding. Little is known, however, how mechanical information in the network guides collective constriction. This proposal will address how a network of mechanical connections is established to drive tissue folding. First, how a 2D network of intercellular connections promotes epithelial folding will be established. A novel approach, adapting methods from both astronomy and the mathematics of network theory will map the previously unquantifiable myosin network across hundreds of cells in a developing tissue. Preliminary studies have identified an initial growth phase and a subsequent contractile phase in the network. Growth Phase: We hypothesize that persistent network connections are established when neighboring cells simultaneously undergo a pulsed myosin accumulation. To test this hypothesis the position and timing of myosin recruitment will be coupled with the creation or reorganization network connections. Embryo injections inhibiting myosin pulsing will test the requirement of pulsing for network formation. Contractile Phase: We hypothesize that signatures in network geometry guide stereotypic tissue folding. Tissue-wide connectivity will be correlated with regions of coordinated cell constriction. Laser cutting will test the importance of connectivity patterns for tissue folding by selectively severing configurations in the network. Our approach could identify a novel unit of cooperation between the cell and the tissue scale over which cells synchronize. Second, how RhoA signaling influences cell interactions across a tissue will be investigated. Rho-associated coiled-coil kinase (ROCK) can activate myosin directly through phosphorylation or indirectly via inhibitory phosphorylation of myosin phosphatase (MP). To test the hypothesis that the balance between ROCK and MP dictates myosin network connectivity, MP will be constitutively activated at varying levels uncoupling its activity from ROCK regulation. This technique yields a phenotypic regime whereby the network is disrupted with varying severity. The global MP to ROCK activity required for myosin network regulation, as well as the local role of ROCK in shielding myosin filaments from disassembly, will be addressed. Taken together the two aims will form a foundational framework to understand general rules that govern how cells interact to reproducibly change tissue shape.
正确的组织形状对于适当的组织功能是必不可少的,并且形态发生失调导致 许多常见的先天性疾病。然而,数千甚至数百个细胞的群体如何协调, 通过大规模移动产生的定型形状变化仍然知之甚少。一种方法是让细胞 相互作用是通过机械耦合。事实上,细胞间大规模的肌动球蛋白连接网络 跨越各种模式生物的发育组织。高度可重复的发展计划和 果蝇强大的遗传工具箱使果蝇腹沟成为研究这种基因的理想系统。 网络.在犁沟形成过程中,细胞协调脉冲收缩以产生组织范围的弯曲。组织 具有在折叠之前完全形成的动态肌球蛋白网络。然而,我们所知甚少, 网络中的机械信息引导集体收缩。该提案将讨论如何 建立机械连接网络以驱动组织折叠。首先,如何构建一个二维网络, 将建立促进上皮折叠的细胞间连接。一种新的方法,适应方法 从天文学和数学网络理论将映射以前无法量化的肌球蛋白 在发育中的组织中有数百个细胞组成的网络。初步研究发现, 在网络中的收缩阶段和随后的收缩阶段。生长阶段:我们假设持续性 当相邻细胞同时经历脉冲肌球蛋白时, 积累为了检验这一假设,肌球蛋白募集的位置和时间将与肌球蛋白的表达结合起来。 创建或重组网络连接。胚胎注射抑制肌球蛋白脉冲将测试 网络形成的脉冲要求。收缩期:我们假设网络中的签名 几何形状引导定型组织折叠。组织范围内的连通性将与以下区域相关: 协调的细胞收缩。激光切割将测试组织折叠的连接模式的重要性, 选择性地切断网络中的配置。我们的方法可以确定一个新的合作单位 在细胞和组织之间的尺度上,细胞是同步的。第二,RhoA信号如何影响 将研究整个组织中的细胞相互作用。Rho相关卷曲螺旋激酶(ROCK)可以激活 肌球蛋白直接通过磷酸化或间接通过肌球蛋白磷酸酶抑制磷酸化 (MP)。为了检验ROCK和MP之间的平衡决定肌球蛋白网络连接的假设, MP将在不同水平上被组成性激活,使其活性与ROCK调节解偶联。这 该技术产生了一种表型机制,其中网络以不同的严重程度被破坏。全球议员, 肌球蛋白网络调节所需的ROCK活性,以及ROCK在保护肌球蛋白中的局部作用 拆卸的细丝,将得到解决。这两个目标合在一起将构成一个基本框架 了解细胞如何相互作用以可重复地改变组织形状的一般规则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hannah Gabrielle Duclos Yevick其他文献

Hannah Gabrielle Duclos Yevick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hannah Gabrielle Duclos Yevick', 18)}}的其他基金

Investigating how mechanical connectivity yields developmental robustness
研究机械连接如何产生发育稳健性
  • 批准号:
    10261353
  • 财政年份:
    2020
  • 资助金额:
    $ 5.71万
  • 项目类别:
Investigating how mechanical connectivity yields developmental robustness
研究机械连接如何产生发育稳健性
  • 批准号:
    10729991
  • 财政年份:
    2020
  • 资助金额:
    $ 5.71万
  • 项目类别:
Investigating Patterns of Cell Interactions During Epithelial Folding
研究上皮折叠过程中细胞相互作用的模式
  • 批准号:
    9191725
  • 财政年份:
    2016
  • 资助金额:
    $ 5.71万
  • 项目类别:
Investigating Patterns of Cell Interactions During Epithelial Folding
研究上皮折叠过程中细胞相互作用的模式
  • 批准号:
    9395382
  • 财政年份:
    2016
  • 资助金额:
    $ 5.71万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.71万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 5.71万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了