A microaggregation framework for reproducible research with observational data: addressing biases while protecting personal identities
利用观察数据进行可重复研究的微聚合框架:在保护个人身份的同时解决偏见
基本信息
- 批准号:9306948
- 负责人:
- 金额:$ 16.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:ALPPAddressAdverse drug eventArchitectureClinical TrialsCommunitiesConflict (Psychology)DataData ScienceData SourcesDatabasesDepositionDisclosureDiseaseEffectivenessElectronic Health RecordEventEvidence Based MedicineExperimental DesignsFamilyFosteringFoundationsFuture GenerationsGene ExpressionGene ProteinsGoalsHealthHealthcareIncidenceIndividualInformaticsKnowledgeLearningLiteratureManuscriptsMapsMeasuresMedicalMedicineMethodologyMethodsMissionModelingObservational StudyOnset of illnessOutcomePatient-Focused OutcomesPatientsPharmacotherapyPrivacyRandomizedRandomized Controlled TrialsRecordsReproducibilityResearchRestRiskSafetyScienceSecureSignal TransductionSurvival AnalysisSystemTaxonomyTechnologyTimeUpdatealternative treatmentbasecase controlclinical practicecomparative effectivenessdata accessdata formatdata sharingdatabase querydesigneffectiveness researchhealth datahealth recordimprovedindividual patientinnovationinterestknowledge basemembernovelpatient privacypoint of careprecision medicinepreventprogramsrepositorysuccesstreatment choice
项目摘要
PROJECT SUMMARY/ABSTRACT
The primary objective of the current proposal is to foster efforts towards transparent and
reproducible knowledge repositories for evidence-based medicine. The wealth of healthcare
data already available in electronic health records could be better utilized to help guide
treatment choices and compliment findings from randomized controlled trials. This proposal
addresses two major obstacles. The first is the challenge of deriving high-quality evidence from
observational data in the presence of biases and confounders, particularly with temporal data.
The second is that patient privacy and other concerns prevent disclosure of source data, which
hinders reproducible research -- currently there is a vast body of medical literature whose
findings guide clinical practice, yet cannot be independently scrutinized. We will address these
challenges through an innovative methodology, local control, which both corrects biases and
enables disclosure of question-specific microaggregated data to reproduce research findings
without disclosure of individual information. The key idea behind local control is to form many
homogeneous patient clusters within which one can compare alternate treatments, statistically
correcting for measured biases and confounders, analogous to a randomized block design. Our
methodology provides a unified framework for enabling open, high quality, comparative
effectiveness research by combining novel feature selection approaches, based on fractional
factorial experimental design, with advances in survival analysis, including competing risks. We
will create a public R package containing a family of methods for nonparametric bias correction
and statistical disclosure control in cross-sectional, case-control, and survival analysis settings.
Success of this research will also enable a novel model, we term “parcelled data sharing” to
facilitate open selective release of proprietary data sources for specific questions --
simultaneously protecting patient privacy, proprietary interests, and the public good. Our
research will contribute to the goal of evidence-based medicine being supported by national and
global knowledge bases on thousands of comparative effectiveness questions from 100’s of
millions of patients’ health records. This application supports the NLM mission by assisting in
the advancement of medical and related sciences through the dissemination and exchange of
important information to the progress of medicine and health. The specific aims are to (1)
Develop and evaluate a survival-based local control methodology for bias-corrected treatment
comparisons in time-to-event observational data; and (2) Develop and evaluate local control-
based microaggregation for reproducible research.
项目总结/摘要
本提案的主要目标是促进努力实现透明和
循证医学的可复制知识库。医疗保健的财富
可以更好地利用电子健康记录中已有的数据,
治疗选择和随机对照试验的结果。这项建议
解决了两个主要障碍。第一个挑战是从以下方面获得高质量的证据:
观察数据中存在的偏见和混杂因素,特别是与时间数据。
第二,患者隐私和其他问题阻止了源数据的披露,
阻碍了可重复的研究--目前有大量的医学文献,
研究结果指导临床实践,但不能独立审查。我们将解决这些问题
通过创新的方法,本地控制,既纠正偏见,
能够披露特定问题的微观汇总数据,以重现研究结果
不披露个人信息。地方控制背后的关键思想是形成许多
同质患者群,在其中可以在统计学上比较替代治疗
校正测量偏差和混杂因素,类似于随机区组设计。我们
方法提供了一个统一的框架,使开放的,高质量的,比较
有效性研究结合新的特征选择方法,基于分数
析因实验设计,生存分析的进展,包括竞争风险。我们
我将创建一个公共R包,其中包含一系列非参数偏差校正方法
以及在横断面、病例对照和生存分析设置中的统计披露控制。
这项研究的成功还将使一种新的模式成为可能,我们称之为“打包数据共享”,
促进针对具体问题公开、有选择地发布专有数据源-
同时保护患者隐私、专有利益和公共利益。我们
研究将有助于实现循证医学的目标,
全球知识库,基于数百年来数千个比较有效性问题,
数百万病人的健康记录此应用程序通过协助执行以下任务来支持NLM使命:
通过传播和交流医学和相关科学,
医学和健康进步的重要信息。具体目标是:(1)
开发和评估基于生存率的局部控制方法,用于偏倚校正治疗
时间-事件观察数据的比较;和(2)制定和评估当地控制-
基于微聚集的可重复研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LocalControl: An R Package for Comparative Safety and Effectiveness Research.
- DOI:10.18637/jss.v096.i04
- 发表时间:2020
- 期刊:
- 影响因子:5.8
- 作者:Lauve NR;Nelson SJ;Young SS;Obenchain RL;Lambert CG
- 通讯作者:Lambert CG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christophe G. Lambert其他文献
Christophe G. Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christophe G. Lambert', 18)}}的其他基金
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 的自杀检测和治疗结果
- 批准号:
10587966 - 财政年份:2022
- 资助金额:
$ 16.29万 - 项目类别:
Deriving high-quality evidence from national healthcare databases to improve suicidality detection and treatment outcomes in PTSD and TBI
从国家医疗保健数据库中获取高质量证据,以改善 PTSD 和 TBI 的自杀检测和治疗结果
- 批准号:
10088135 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10217890 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10683510 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10907966 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Illuminating the Druggable Genome Data Coordinating Center - Engagement Plan with the CFDE
阐明可药物基因组数据协调中心 - 与 CFDE 的合作计划
- 批准号:
10468527 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6341382 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6582179 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
7013551 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
Software Relating Genes to Disease and Clinical Outcomes
将基因与疾病和临床结果相关的软件
- 批准号:
6693828 - 财政年份:2001
- 资助金额:
$ 16.29万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Research Grant