Dynamic Mechanisms of Membrane Channel Gating by CryoEM

CryoEM 膜通道门控的动态机制

基本信息

  • 批准号:
    9381650
  • 负责人:
  • 金额:
    $ 37.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Pore-forming membrane channels are central mediators of many complex biological phenomena; such as synchronizing the contraction of our heart and electro-chemical signals in our brain, and detecting light, sound, touch, taste and smells of the world around us. This ability is dependent upon dynamic mechanism used to spatially and temporally modulate their cellular activity. Our research group is focused on understanding how these types of phenomena are choreographed by remarkably complex strategies of cell-to-cell communication, through the gap junctions. We aim to develop a molecular and atomic-level of mechanistic understanding of how gap junctions coordinate inter-cellular communication. To achieve this level of detail, we are combining the unique power of electron cryo-microscopy (CryoEM), together with targeted biophysical and functional studies to address several fundamental questions, such as: i) How do the gap junctions selectively control the flow of chemical information between cells? ii) How are their activities allosterically modulated by physiological cues? iii) How are cell-signaling platforms used to effectively control channel activity in a native multi-cellular environment? Despite their physiological and medical relevance, membrane proteins still only represent ~4% of the protein structure database. However, recent advances in the field of high-resolution single particle CryoEM, coupled with advancements in membrane protein biochemistry, are beginning to revolutionize the way we structurally characterize these proteins. With these technological tools in hand, we are addressing several key questions about gap junction selectivity and regulation. The results of our investigations are expected to provide an architectural framework and the mechanistic knowledge required for the development of targeted therapies against a range of gap junction related diseases, such as blindness, deafness, arrhythmia, stroke and cancers.!
项目摘要 成孔膜通道是许多复杂生物现象的中心媒介;例如 使我们心脏的收缩和大脑中的电化学信号同步,并检测光、声音、 触摸、品尝和闻到我们周围的世界。这种能力依赖于用于 在空间和时间上调节它们的细胞活动。我们的研究小组致力于了解 这些类型的现象是由非常复杂的细胞间通信策略编排的, 穿过缝隙连接。我们的目标是发展一种分子和原子水平的机械理解 缝隙连接如何协调细胞间的通讯。为了实现这种级别的细节,我们正在结合 电子冷冻显微镜(CryoEM)的独特力量,以及靶向生物物理和功能 研究以解决几个基本问题,例如:i)缝隙连接如何选择性地控制 细胞间的化学信息流?二)它们的活动是如何受生理的变构调节的 暗示?Iii)如何使用细胞信号平台来有效控制本地多细胞中的通道活动 环境?尽管它们与生理和医学相关,但膜蛋白仍然只占~4% 蛋白质结构数据库。然而,高分辨率单粒子领域的最新进展 低温EM,加上膜蛋白生物化学的进步,正在开始彻底改变 我们从结构上描述这些蛋白质的方式。有了这些技术工具,我们正在解决 有关间隙结选择性和调节的几个关键问题。我们的调查结果如下 期望提供开发所需的体系结构框架和机械知识 针对一系列缝隙连接相关疾病的靶向治疗,如失明、耳聋、 心律不齐、中风和癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Loen Reichow其他文献

Stephen Loen Reichow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Loen Reichow', 18)}}的其他基金

Structure, function and aggregation of lens α-crystallins by CryoEM
CryoEM 晶状体α-晶状体蛋白的结构、功能和聚集
  • 批准号:
    10089452
  • 财政年份:
    2020
  • 资助金额:
    $ 37.13万
  • 项目类别:
Structure, function and aggregation of lens α-crystallins by CryoEM
CryoEM 晶状体α-晶状体蛋白的结构、功能和聚集
  • 批准号:
    10363616
  • 财政年份:
    2020
  • 资助金额:
    $ 37.13万
  • 项目类别:
Structure, function and aggregation of lens α-crystallins by CryoEM
CryoEM 晶状体α-晶状体蛋白的结构、功能和聚集
  • 批准号:
    10876690
  • 财政年份:
    2020
  • 资助金额:
    $ 37.13万
  • 项目类别:
Dynamic Mechanisms of Membrane Channel Gating by CryoEM
CryoEM 膜通道门控的动态机制
  • 批准号:
    10687015
  • 财政年份:
    2017
  • 资助金额:
    $ 37.13万
  • 项目类别:
Dynamic Mechanisms of Membrane Channel Gating by CryoEM
CryoEM 膜通道门控的动态机制
  • 批准号:
    10406779
  • 财政年份:
    2017
  • 资助金额:
    $ 37.13万
  • 项目类别:
Dynamic Mechanisms of Membrane Channel Gating by CryoEM
CryoEM 膜通道门控的动态机制
  • 批准号:
    10244881
  • 财政年份:
    2017
  • 资助金额:
    $ 37.13万
  • 项目类别:
CRYSTALLOGRAPHIC STUDIES OF THE AQP0-CAM COMPLEX
AQP0-CAM 复合体的晶体学研究
  • 批准号:
    8362162
  • 财政年份:
    2011
  • 资助金额:
    $ 37.13万
  • 项目类别:
CRYSTALLOGRAPHIC STUDIES OF THE AQP0-CAM COMPLEX
AQP0-CAM 复合体的晶体学研究
  • 批准号:
    8170113
  • 财政年份:
    2010
  • 资助金额:
    $ 37.13万
  • 项目类别:
CRYSTALLOGRAPHIC STUDIES OF THE AQP0-CAM COMPLEX
AQP0-CAM 复合体的晶体学研究
  • 批准号:
    7954443
  • 财政年份:
    2009
  • 资助金额:
    $ 37.13万
  • 项目类别:
Electron crystallographic studies of water channel regulation
水通道调节的电子晶体学研究
  • 批准号:
    7611345
  • 财政年份:
    2009
  • 资助金额:
    $ 37.13万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 37.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了