Elucidating the Role of Mechanosensitive Signaling in Mediating Cell-Biomaterial Interactions
阐明机械敏感信号在介导细胞-生物材料相互作用中的作用
基本信息
- 批准号:9338238
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAlpha CellAreaBehaviorBiochemicalBiocompatible MaterialsBiomaterials ResearchBiosensorCell Differentiation processCell ShapeCell SizeCell physiologyCellsComplexCuesCytoskeletonDefectDetectionDevelopmentDiseaseEngineeringEnvironmentExtracellular MatrixExtracellular Matrix ProteinsExtracellular ProteinFibrosisFocal AdhesionsFoundationsGoalsInstructionKnowledgeLeadLinkMalignant NeoplasmsMeasuresMechanicsMediatingMethodsMissionMolecularNatureOutputPatternProcessPropertyProteinsReportingResearchRoleSignal PathwaySignal TransductionStem cellsStimulusStructureSurfaceSystemSystems BiologySystems DevelopmentTestingTissuesTranslatingUnited States National Institutes of HealthVariantVinculinWorkbasebiomaterial interfacecell behaviorclinical applicationdesignexperienceextracellularfunctional outcomesimprovedin vivomechanical forcemechanical loadmechanical propertiesmechanotransductionnovelresponsescaffoldstem
项目摘要
At a fundamental level, advances in biomaterials research are driven by the ability to elicit desired cell
behaviors through the development of instructive biomaterial surfaces. Rational design of novel biomaterials
that can successfully manipulate cell behavior toward a specific function requires both identification of
instructive cues and a mechanistic understanding of how these cues alter cellular function. However,
determining the specific combination of cues to induce a precise set of cellular behaviors leading to a
predictable functional outcome remains challenging. The challenge stems from an incomplete understanding of
the mechanisms used by cells to detect and respond to environmental cues, particularly physical cues such as
confinement of cell shape or stiffness of the extracellular environment. Physical cues are detected through
mechanotransduction, a poorly understood process through which cells convert physical stimuli into
biochemically detectable signals. Recent advances in the study of mechanotransduction have isolated a key
role for the focal adhesion protein vinculin, an important linkage in the mechanical connections between the
extracellular environment and the force-generating actin cytoskeleton. This proposal seeks to evaluate the
hypothesis that cells sense diverse changes in the physical nature of the cell-biomaterial interface through
distinct mechanical loading of vinculin, leading to the activation of cell signaling pathways. Specifically, we will
study the effects of cell shape, cell size, and extracellular proteins on force-sensitive signal activation. The
proposed work is relevant to the mission of NIH as it will increase the fundamental understanding of how cells
sense and respond to the physical aspects of their surroundings. This will lay the foundation for advances in
biomaterials design as well as aid efforts to understand disease states associated with defects in the physical
nature of the cellular environment, such as cancer and excessive tissue fibrosis.
从根本上说,生物材料研究的进步是由诱导所需细胞的能力驱动的。
行为通过发展有益的生物材料表面。新型生物材料的合理设计
能够成功地操纵细胞行为使其发挥特定功能的方法,
有启发性的线索和对这些线索如何改变细胞功能的机械理解。然而,在这方面,
确定线索的特定组合以诱导导致细胞行为的精确集合,
可预测的功能结果仍然具有挑战性。这一挑战源于对以下问题的不完全理解:
细胞用来检测和响应环境线索的机制,特别是物理线索,
细胞形状的限制或细胞外环境的硬度。物理线索是通过
机械传导,一种人们知之甚少的过程,细胞通过该过程将物理刺激转化为
生化检测信号机械传导研究的最新进展已经分离出一个关键的
粘着斑蛋白黏着斑蛋白的作用,黏着斑蛋白是细胞间机械连接的重要联系,
细胞外环境和产生力的肌动蛋白细胞骨架。该提案旨在评估
假设细胞感觉到细胞-生物材料界面的物理性质的不同变化,
黏着斑蛋白的不同机械负载,导致细胞信号传导途径的激活。具体来说,我们将
研究细胞形状、细胞大小和细胞外蛋白质对力敏信号激活的影响。的
拟议的工作与NIH的使命有关,因为它将增加对细胞如何
对周围环境的物理方面做出感知和反应。这将为以下方面的进展奠定基础:
生物材料设计以及帮助理解与物理缺陷相关的疾病状态的努力,
细胞环境的性质,如癌症和过度的组织纤维化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brenton D Hoffman其他文献
Brenton D Hoffman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brenton D Hoffman', 18)}}的其他基金
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
9912654 - 财政年份:2019
- 资助金额:
$ 18.6万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 18.6万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




